摘要:
A method and system for controlling electron densities in a plasma processing system. By applying a dither voltage and a correction voltage to a voltage-controlled oscillator, electron (plasma) density of a plasma processing system (acting as an open resonator) may be measured and controlled as part of a plasma-based process.
摘要:
A system for measuring plasma electon densities (e.g., in the range of 1010 to 1012 cm−3) and for controlling a plasma generator (240). Measurement of the plasma density is essential if plasma-assisted processes, such depositions or etches, are to be adequately controlled using a feedback control. Both the plasma measurement method and system generate a control voltage that in turn controls the plasma generator (240) to maintain the plasma electron density at a pre-selected value. The system utilizes a frequency stabilization system to lock the frequency of a local oscillator (100) to the resonant frequency of an open microwave resonator (245) when the resonant frequency changes due to the introduction of a plasma within the open resonator. The amplified output voltage of a second microwave discriminator may be used to control a plasma generator (240).
摘要翻译:用于测量等离子体电离密度(例如,10 10 -10 cm -3 -3)的系统和用于控制等离子体发生器(240)的系统。 如果使用反馈控制充分控制等离子体辅助过程,这种沉积或蚀刻,则等离子体密度的测量是必不可少的。 等离子体测量方法和系统都产生控制电压,该控制电压又控制等离子体发生器(240)以将等离子体电子密度维持在预选值。 当谐振频率由于在开放谐振器内引入等离子体而改变时,系统利用频率稳定系统将本地振荡器(100)的频率锁定到开放式微波谐振器(245)的谐振频率。 第二微波识别器的放大的输出电压可以用于控制等离子体发生器(240)。
摘要:
A method and system for controlling electron densities in a plasma processing system. By applying a dither voltage and a correction voltage to a voltage-controlled oscillator, electron (plasma) density of a plasma processing system (acting as an open resonator) may be measured and controlled as part of a plasma-based process.
摘要:
A system for measuring plasma electron densities (e.g., in the range of 1010 to 1012 cm−3) and for controlling a plasma generator. Measurement of the plasma electron density is used as part of a feedback control in plasma-assisted processes, such as depositions or etches. Both the plasma measurement method and system generate a control voltage that in turn controls the plasma generator. A programmable frequency source sequentially excites a number of the resonant modes of an open resonator placed within the plasma processing apparatus. The resonant frequencies of the resonant modes depend on the plasma electron density in the space between the reflectors of the open resonator. The apparatus automatically determines the increase in the resonant frequency of an arbitrarily chosen resonant mode of the open resonator due to the introduction of a plasma and compares that measured frequency to data previously entered. The comparison is by any one of (1) dedicated circuitry, (2) a digital signal processor, and (3) a specially programmed general purpose computer. The comparator calculates a control signal which is used to modify the power output of the plasma generator as necessary to achieve the desired plasma electron density.
摘要:
A method and system for measuring at least one of a plasma density and an electron density (e.g., in a range of 1010 to 1012 electrons/cm−3) using plasma induced changes in the frequency of a microwave oscillator. Measurement of at least one of the plasma density and the electron density enables plasma-assisted processes, such as depositions or etches, to be controlled using a feedback control. Both the measurement method and system generate a control voltage that in turn controls a plasma generator to maintain at least one of the plasma density and the electron density at a pre-selected value.
摘要翻译:使用等离子体引起的微波振荡器的频率变化来测量等离子体密度和电子密度(例如,在1010至1012电子/ cm -3)的范围中的至少一个的方法和系统。 测量等离子体密度和电子密度中的至少一个使得能够使用反馈控制来控制诸如沉积或蚀刻的等离子体辅助处理。 测量方法和系统都产生控制电压,该控制电压又控制等离子体发生器以将等离子体密度和电子密度中的至少一个保持在预选值。
摘要:
A method, apparatus and system are provided herein for an electrically assisted chemical oxygen iodine laser. The preferred system, in accordance with the present invention, includes a laser resonator with a laser-active gas mixture of at least excited oxygen and dissociated iodine. A first electrical generator in which a primary flow of at least excited oxygen is electrically generated from a first gas that includes at least ground state oxygen. A second electrical generator in which a secondary flow of at least dissociated iodine atoms is electrically generated from a second gas that includes at least diatomic iodine. The system further includes a means to inject the secondary flow into the primary flow to generate the laser-active gas mixture.
摘要:
In an embodiment of the invention there is provided a pulse circuit including two transmission lines or other capacitive energy storage circuits resonantly charged by inductors and diodes that are connected to a DC power source. The pulse circuit includes a pulse transformer that may be connected in series with the transmission lines or artificial lines with a turns ratio chosen to match the load impedance to primary circuit impedance or to generate the optimum pulsed voltage source. Multiple switches can be employed to increase the repetition frequency of the pulses. For transmission lines and L-C artificial lines, the pulse alternates in polarity; for simple capacitive energy storage, the pulses are unipolar.
摘要:
A method of generating an electrical discharge in a high pressure gas contained in a sealed enclosure. The method includes driving a helical coil resonator at an RF frequency to generate an RF electric-magnetic field sufficient to generate an electrical discharge in the high pressure gas. The electrical discharge produces an emission spectrum that may be spectroscopically analyzed to determine the composition and impurity content of the gas.
摘要:
A high-voltage crowbar circuit continually senses the load impedance and crowbars the output voltage applied to a load if the load impedance falls below a selected value. A differentiator circuit at the load senses variations in load voltage and can trigger the crowbar operation if the voltage variation as a function of time exceeds a preselected load.
摘要:
The present invention provides in one of the embodiments for either a continuous wave (cw) or pulsed alkali laser having an optical cavity resonant at a wavelength defined by an atomic transition, a van der Waals complex within the optical cavity, the van der Waals complex is formed from an alkali vapor joined with a polarizable gas, and a pump laser for optically pumping the van der Waals complex outside of the Lorentzian spectral wings wherein the van der Waals complex is excited to form an exciplex that dissociates forming an excited alkali vapor, generating laser emission output at the wavelength of the lasing transition.