摘要:
In the non-sintered nickel electrode for an alkaline storage battery according to the invention, a yttrium metal powder and/or a yttrium compound powder has been added to a particulate active material comprising composite particles each consisting of a nickel hydroxide core and a sodium-doped cobalt compound shell. Because the yttrium metal powder and/or yttrium compound powder inhibits the diffusion of cobalt into the nickel hydroxide core, the non-sintered nickel electrode of the invention exhibits a high utilization efficiency not only in an initial phase of charge-discharge cycling but over a long time of use. Moreover, because the yttrium metal powder and/or yttrium compound powder enhances the oxygen overpotential, the non-sintered nickel electrode for an alkaline storage battery according to the invention shows very satisfactory charge characteristics particularly at high temperatures.
摘要:
A conductive agent for use in alkaline storage batteries in accordance with one aspect of the present invention contains 0.1 to 10% by weight sodium. This sodium content results from cobalt or a cobalt compound, to which an aqueous solution of sodium hydroxide is added and heated to 50 to 200.degree. C. A non-sintered nickel electrode for use in alkaline storage batteries is also proposed. In this electrode, the aforesaid conductive agent in accordance with the present invention is added to a pulverulent active material consisting of grains of nickel hydroxide or grains mainly constituted by nickel hydroxide such that 1 to 20 parts by weight of the conductive agent is added to 100 parts by weight nickel hydroxide contained in the pulverulent active material. Another non-sintered nickel electrode for use in alkaline storage batteries is also proposed. In this electrode, an active material takes the form of composite particles consisting of grains of nickel hydroxide or grains mainly constituted by nickel hydroxide, each of which has a surface formed with an electric conduction layer consisting of a cobalt compound containing 0.1 to 10% by weight sodium.
摘要:
In an alkali storage battery comprising a positive electrode, a negative electrode and an alkali electrolyte in a battery can, .alpha.-nickel hydroxide containing manganese is used as a cathode active material for the positive electrode, and the difference between a charging potential and an oxygen gas evolution potential at the positive electrode is increased, to suppress oxygen gas evolution during the charging, and the volume percentage of the cathode active material and an anode active material is set to not less than 75% in the battery can, to obtain a large battery capacity.
摘要:
A metal hydride alkaline storage cell of the present invention comprises a positive electrode, a separator impregnated with an electrolyte, and a negative electrode comprising hydrogen-absorbing alloy powder. On the surface of the hydrogen-absorbing alloy powder, there is formed a layer of hydrogen-absorbing alloy oxide, and on the layer of the oxide, there is dotted a catalytic metal formed in a granular state by adding a substance soluble in the electrolyte. The substance is selected from the group consisting of a metal fluoride, a metal iodide, and a metal sulfide. The proportion of the metal fluoride, the metal iodide, or the metal sulfide in adding is restricted within the range of from 0.1 to 2.5 wt. % based on the weight of hydrogen-absorbing alloy powder. When the layer of the hydrogen-absorbing alloy oxide is formed on the surface of the hydrogen-absorbing alloy powder, the reaction area on the surface of the hydrogen-absorbing alloy is increased due to the roughness of the layer. Consequently, the catalytic action of the metal is fully utilized by dotting a catalytic metal on the alloy surface, and thereby the inner pressure characteristic high-rate charge characteristic) of a cell is improved.
摘要:
In a nickel-metal hydride storage cell, deterioration of a cell capacity at high temperature and degradation of a cycle characteristic are suppressed. The nickel-metal hydride storage cell of the invention comprises in a cell case, a positive electrode comprising a positive electrode active material composed mainly of nickel hydroxide powder, a negative electrode comprising a negative electrode active material composed mainly of hydrogen-absorbing alloy powder, and a separator interposed between the positive and negative electrodes and impregnated with an electrolyte, the nickel-metal hydride storage cell characterized in that the negative electrode active material comprises a copper compound, the positive electrode comprises an aggregate of coated particles each in which a coating layer comprising a sodium-containing cobalt compound is formed on a surface of a nickel hydroxide particle, and the positive electrode active material is such that an oxide or hydroxide of one of bismuth, calcium, ytterbium, manganese, copper, scandium, and zirconium, is added to the aggregate of coated particles.
摘要:
A method of manufacturing a metal hydride alkaline storage cell includes a first step of preparing a negative electrode by applying a paste containing hydrogen absorbing alloy powder onto a substrate; and a second step of placing the negative electrode and a positive electrode into a cell can with disposing separator therebetween, and thereafter pouring an electrolyte into the cell can. Into the paste or the electrolyte, a catalytic metal compound that has a proportion of 0.1 to 2.5 wt. % based on the weight of the hydrogen-absorbing alloy powder and that is soluble in the electrolyte is added. Consequently, the catalytic action of the metal is fully utilized by this method that dots a catalytic metal or metal compound on the alloy surface, and thereby the inner pressure characteristic (high-rate charge characteristic) of a cell is improved.
摘要:
In the non-sintered nickel electrode for an alkaline storage battery according to the present invention, the active material powder is made up of composite particles, each comprising a nickel hydroxide-containing core particle and a shell layer coating the nickel hydroxide-containing core particle, the shell layer containing a bismuth-containing compound, or is made up of composite particles, each comprising a nickel hydroxide-containing core particle, an inner shell layer coating the nickel hydroxide-containing core particle and an outer shell layer coating the inner shell layer, the inner shell layer containing a bismuth-containing compound and the outer shell layer containing cobalt metal, cobalt monoxide, cobalt hydroxide, cobalt oxyhydroxide or a sodium-containing cobalt compound prepared by adding an aqueous solution of sodium hydroxide to cobalt metal, cobalt monoxide, cobalt hydroxide or cobalt oxyhydroxide to obtain a mixture and heat-treating the mixture in the presence of oxygen. Provided is a non-sintered nickel electrode for an alkaline storage battery, having a high active material utilization rate not only when charged at normal temperatures but also when charged at high temperatures, and having good charge-discharge cycle characteristics.
摘要:
A metal hydride alkaline storage cell of the present invention comprises a positive electrode, a separator impregnated with an electrolyte, and a negative electrode comprising hydrogen-absorbing alloy powder. On the surface of the hydrogen-absorbing alloy powder, there is formed a layer of hydrogen-absorbing alloy oxide, and on the layer of the oxide, there is dotted a catalytic metal or metal compound formed in a granular state by adding a substance soluble in the electrolyte. The substance is selected from the group consisting of a metal fluoride, a metal chloride, a metal iodide, and a metal sulfide. The proportion of the metal fluoride, the metal chloride, the metal iodide, or the metal sulfide in adding, is restricted within the range of from 0.1 to 2.5 wt. % based on the weight of hydrogen-absorbing alloy powder. When the layer of the hydrogen-absorbing alloy oxide is formed on the surface of the hydrogen-absorbing alloy powder, the reaction area on the surface of the hydrogen-absorbing alloy is increased due to the roughness of the layer. Consequently, the catalytic action of the metal is fully utilized by dotting a catalytic metal or metal compound on the alloy surface, and thereby the inner pressure characteristic (high-rate charge characteristic) of a cell is improved.
摘要:
The hydrogen-absorbing alloy electrode for alkaline storage batteries according to the invention comprises a hydrogen absorbing alloy powder prepared by grinding a strip of hydrogen absorbing alloy produced by solidifying a molten alloy by a roll method and satisfying the following relations:r/t.ltoreq.0.5 (1)60.ltoreq.t.ltoreq.180 (2)30.ltoreq.r.ltoreq.90 (3)wherein r represents the mean particle size (.mu.m) of the hydrogen absorbing alloy powder and t represents the mean thickness (.mu.m) of the strip absorbing alloy. The hydrogen absorbing alloy electrode of this invention features an improved high-rate discharge characteristic at low temperature.
摘要翻译:根据本发明的碱性蓄电池的吸氢合金电极包括通过研磨通过辊法固化熔融合金而制备的吸氢合金条而制备的吸氢合金粉末,并且满足以下关系:r / t < = 0.5(1)60 = t 180(2)30 r = 90(3)其中r表示吸氢合金粉末的平均粒径(μm),t表示 条状吸收合金的平均厚度(μm)。 本发明的吸氢合金电极在低温下具有改善的高倍率放电特性。
摘要:
The invention provides a hydrogen absorbing alloy electrode obtained by the step P1 of preparing a hydrogen absorbing alloy powder containing cobalt and nickel, the step P2 of subjecting the surfaces of the alloy particles to a reduction treatment with high-temperature hydrogen by holding the powder in a high-temperature hydrogen atmosphere under the conditions of temperature, pressure and time sufficient to reduce oxides formed in a surface layer portion of each of the alloy particles, not melting the alloy particles and not permitting the alloy particles to absorb hydrogen, the step P3 of treating the resulting powder with an acid or alkali by immersing the powder in an acid or alkaline aqueous solution, followed by suction filtration, washing with water and drying, and the step P4 of applying the resulting power to an electrically conductive substrate and shaping the substrate in the form of the electrode. The electrode thus provided has higher activity than conventionally.