摘要:
Pre-charge circuitry allows capacitive loads connected to a solid state power controller to be gradually charged up by a PWM, generated with a cycle by cycle current limit, switching a single MOSFET in series with an inductor, before the SSPC is turned on. The pre-charge circuitry may require only three additional components, e.g., a MOSFET, an inductor and a diode, along with a designated MOSFET gate driver.
摘要:
A power distribution system includes the use of a master digital signal processor (DSP) and two slave DSPs connected to the master DSP. The slaves DSPs may be connected to each of a plurality of solid state power channels (SSPC) controlling power distribution functions to each of the channels. A power control strategy may use one power supply for the master DSP, a second power supply shared between the slave DSPs, and a third power supply shared between each of the SSPC channels.
摘要:
High-power power distribution in an aircraft may use solid state power controller (SSPC) technology. A conventional electromechanical contactor may be used, in series, with a solid state switching device (SSSD) to achieve high-power power distribution. Since the electromechanical contactor does not need to be rated for arc handlings during normal SSPC operation, the electromechanical contactor may be simplified, resulting in cost, weight, volume, and failure rate reductions. The power distribution apparatus and methods of the present invention may be applicable for both alternating current (AC) and direct current (DC) applications and can be modified to form a three phase SSPC.
摘要:
An electrical power distribution system (EPDS) for an aircraft, the EPDS may include a DC bus, a power source port, a solid state power controller (SSPC) of a first type interposed between the power source port and the DC bus, at least one load port and an SSPC of a second type interposed between the load port and the DC bus. Power input to the SSPC of the first type may be connected to a unidirectional solid state switching device (SSSD) of the SSPC of the first type. The SSPC of the first type may have forward and reverse current conducting capability and forward and reverse current blocking capability. Power input to the SSPC of the second type may be connected to a unidirectional SSSD of the SSPC of the second type. The SSPC of the second type may have forward and reverse current conducting capability and capability of blocking current from only one direction.
摘要:
A power line communication-based aircraft power distribution system may allow for both power line communication (PLC) technology and spread spectrum time domain reflectometry (SSTDR) technology to be utilized in aircraft power distribution systems to achieve key maintenance functions. Unlike conventional power distribution systems, which may, for example, use only SSTDR for fault detection, the present invention includes a hardware platform that may allow both the PLC and the SSTDR to be utilized in aircraft power distribution systems to achieve key maintenance functions, such as real time wire fault location, and cost and weight savings. Further, unlike conventional power distribution systems, which may only detect and locate damage in feeder conductor wire sections before the power is applied to the load, the power distribution system of the present invention may permit real time wire fault location.
摘要:
A high power solid state power controller packaging system and power panel are disclosed. The high power solid state power controller packaging system includes a plurality of discrete power devices assembled juxtaposed to one another in a row, a fin style heatsink, an input bus bar and an output bus bar, and a circuit card assembly connected to the plurality of discrete power devices for managing power signals among the plurality of discrete power devices. The power panel includes a chassis, a mounting bracket with connector sockets formed in the mounting bracket, and a plurality of high power solid state power control modules modularly mounted in the connector sockets.
摘要:
Hidden or overlapped peaks may occur when using SSTDR technology to determine ware faults. These hidden/overlapped peaks may cause false negative determinations (no fault) when testing a wire for faults. In one method of the present invention, the symmetrical property of the SSTDR wave envelope is used to resolve hidden/overlapped peaks. In another method of the present invention, the calibrated normalized loop back SSTDR wave envelope may be used to resolve hidden/overlapped peaks.