Abstract:
The present invention relates to an inverter system for energy-storing microgrid and a controlling method thereof, wherein the inverter system for energy-storing microgrid is integrated with a detecting module, a controlling and processing module, a visual resistor algorithmic processor, and a PWM signal generator. Moreover, the controlling and processing module is installed with a power-voltage reducing function and a reactive power-frequency reducing function for making the controlling and processing module be able to properly distribute the intensity and output ratio of all the output currents of the inverters according to the charge states of battery modules and load currents. Therefore, the current supply of each of the parallel connected inverters in the inverter system can be automatically distributed and modulated for effectively providing necessary electric power to each of connected loads, respectively.
Abstract:
The present invention discloses a single-phase non-isolated inverter, comprising: a first DC-side capacitor, a second DC-side capacitor, a first switch unit, a second switch unit, a third switch unit, a fourth switch unit, a fifth switch unit, a sixth switch unit, a seventh switch unit, and an eighth switch unit. When the single-phase non-isolated inverter is operated at a zero-voltage switching state, the seventh switch unit and the eighth switch unit are switched to short circuit for forming a short-circuit path between the bus lines. Briefly speaking, this novel single-phase non-isolated inverter has reactive power capability. In addition, according to an adjusting signal of a PI controller, micro controller of the single-phase non-isolated inverter is able to properly adjusts the duty cycle of a switch unit driving signal of the fifth switch unit and the sixth switch unit, so as to cancel the capacitor voltage unbalance between two DC-side capacitors.