Abstract:
A mixed power supply device includes a power supply component for providing a DC voltage; a DC-DC conversion module coupled to the power supply component to receive the DC voltage and output a stable DC voltage; a current transformation module coupled between the DC-DC conversion module and a load to receive the stable DC voltage and convert the stable DC voltage into an AC voltage; and a merging network switching switch coupled to the current transformation module to connect the current transformation module and a utility power network in parallel or disconnect the current transformation module from the utility power network, allowing a load to receive merging network mode-based power supply or standalone mode-based power supply, wherein, in the merging network mode, the current transformation module performs unbalanced current compensation on load unbalance of the load.
Abstract:
The present invention relates to an inverter system for energy-storing microgrid and a controlling method thereof, wherein the inverter system for energy-storing microgrid is integrated with a detecting module, a controlling and processing module, a visual resistor algorithmic processor, and a PWM signal generator. Moreover, the controlling and processing module is installed with a power-voltage reducing function and a reactive power-frequency reducing function for making the controlling and processing module be able to properly distribute the intensity and output ratio of all the output currents of the inverters according to the charge states of battery modules and load currents. Therefore, the current supply of each of the parallel connected inverters in the inverter system can be automatically distributed and modulated for effectively providing necessary electric power to each of connected loads, respectively.
Abstract:
A battery cell management and balance circuit comprises multiple battery cell balance circuits, multiple battery cell monitor units, multiple battery module balance circuits and a battery management unit. The battery cell balance circuits connect to battery cells for executing a first charge or discharge command. The battery cell monitor units monitor battery cells for generating battery cell information and the first charge or discharge commands. The battery module balance circuits connect to battery modules for executing second charge or discharge commands. The battery management unit connect to the battery cell monitor units for receiving battery cell information and the battery module balance circuits for direct or indirectly generating the second charge or discharge commands to the battery module balance circuits. A battery system and a battery cell management and balance circuit method is also introduced.
Abstract:
A single-phase bridgeless insulated power factor adjustment circuit includes an EMI filter module, low-frequency switching diode module, two switches and two insulated voltage transformation modules. The EMI filter module is coupled to an AC power. The low-frequency switching diode module is coupled to the EMI filter module. The two switches are coupled to the low-frequency switching diode module. The two insulated voltage transformation modules are coupled to one of the two switches. With the low-frequency switching diode module being in first ON state, one of the two switches turns on, and one of the two insulated voltage transformation modules turns on. With the low-frequency switching diode module being in second ON state, the other switch turns on, and the other insulated voltage transformation module turns on. Hence, the circuit is unlikely to fail, but features simple circuitry, incurs low costs, be compact, and achieves high conversion efficiency.
Abstract:
A half-bridge resonant bidirectional DC-DC converter circuit comprising a half-bridge buck-boost converter and a resonant DC-DC converter. The half-bridge buck-boost converter is coupled to an external DC power source to achieve a wide input voltage range. The resonant DC-DC converter is coupled to the half-bridge buck-boost converter to act as a later stage circuit of the half-bridge buck-boost converter. The resonant DC-DC converter is used to control the direction of the bidirectional power flow and respond to the half-bridge buck-boost converter under a fixed frequency mode to convert the input of the half-bridge buck-boost converter to an induced current.
Abstract:
A power factor correction conversion device and control method thereof are adapted to send an AC signal to a power factor correction conversion device, convert the AC signal into a DC signal, and perform power factor correction of the DC signal, so as to change a power factor sent to a back-end load, wherein the control method includes a rectification step, a feedback step, a ripple calculating step, a ripple offsetting step, a logical computation step, a pulse width modulation step and a power factor correcting step. Hence, the second-order ripple component in a feedback signal is eliminated to thereby increase the response speed of the power factor correction conversion device and reduce the distortion rate of the current, thus increasing the power factor sent to the back-end load.
Abstract:
A battery management and balance circuit comprises multiple battery group balance circuits, multiple battery module balance circuits and a battery management unit. The battery group balance circuits connect to battery groups for executing first charge or discharge command. The battery management unit connect to the battery group balance circuits and the battery module balance circuits for generating the first and second charge or discharge commands to the battery module balance circuits. A battery system and a battery management and balance circuit method is also introduced.
Abstract:
An apparatus for current estimation of a DC/DC converter includes a current sensing unit, a signal sampling unit, and a current estimator. The current sensing unit is for sensing a current passing through a switch of the DC/DC converter and converting the current into a voltage signal. The signal sampling unit, coupled to the current sensing unit, is for sampling the voltage signal so as to output a sampled signal. The current estimator, coupled to the signal sampling unit, is for determining a signal indicating estimated magnitude of an inductor current of the DC/DC converter, based on the sampled signal, a scale factor of the current sensing unit, a duty ratio of a driving signal for controlling the switch, an input voltage and an output voltage of the DC/DC converter. An apparatus for current estimation that can further control an averaged current of a DC/DC converter.
Abstract:
A phase-locked loop method for use in utility electricity parallel-connection system is introduced. The phase-locked loop method comprises a conversion signal generating step, an error calculating step, a frequency correction signal obtaining step, an angle signal obtaining step, and a synchronous signal generating step to not only calculate an error value by detecting a utility electricity voltage, but also reduce or return-to-zero the error value by proportional integral adjustment. With the steps, the phase-locked loop method achieves synchrony precisely by eliminating input utility electricity voltage distortion and frequency variation. Furthermore, the phase-locked loop method advantageously features quick response and a wide frequency range and therefore is effective in tracking power generation facilities, such as a diesel generator, and expanding inverters.
Abstract:
A control method for reducing second-order ripple is adapted to reduce second-order ripple on an input side of a DC-DC conversion device, wherein the input side of the DC-DC conversion device is coupled to a preceding voltage supply device, and an output side of the DC-DC conversion device is coupled to a DC-AC transforming device, characterized in that a voltage control device for controlling the preceding voltage supply device is designed according to a transfer function, and the transfer function is adjusted and controlled with an output voltage of the DC-DC conversion device and an amplitude voltage of pulse width modulation to reduce second-order ripple of an input voltage input to the input side of the DC-DC conversion device, thereby dispensing the need to increase circuits or increase capacitance of components and cutting costs.