摘要:
A compact inverter system includes a bus bar. The bus bar includes a terminal for connection to a positive terminal of a DC voltage supply. The compact inverter also includes a heat sink, a first transistor, and a second transistor. The first transistor has first and second terminals between which current is transmitted when the first transistor is activated, and a first gate terminal controlling the first transistor. The first terminal of the first transistor is thermally and electrically connected to the bus bar. The second transistor has first and second terminals between which current is transmitted when the second transistor is activated, and a second gate terminal controlling the second transistor. The first terminal of the second transistor is thermally and electrically connected to the heat sink. The first and second transistors are positioned between the bus bar and the heat sink. The first transistor is positioned between the second transistor and the bus bar. The second transistor is positioned between the first transistor and the heat sink.
摘要:
A multi-switch types hybrid power electronics build block (MST HPEBB) least replaceable unit converter employs a first low voltage side (for example, 1000 volt power switches) and a second high voltage side (for example, 3000 volt power switches). The MST HPEBB LRU employs multiple bridge converters connected in series and/or in parallel, and coupled in part by a 1:1 transformer. To reduce weight and volume requirements compared to known PEBB LRUs, different power switch types are employed in different bridge converters. For example, in one exemplary embodiment, low voltage 1.7 kVolt SiC MOSFETS may be employed on the lower voltage side, while at least some 4.5 kVolt Silicon IGBTs may be employed on the high voltage side.
摘要:
Disclosed is an apparatus including: a photovoltaic panel; a CPG controller configured to receive a limit output power value of a photovoltaic panel, a photovoltaic panel terminal voltage, and a photovoltaic panel output current and output a photovoltaic panel terminal voltage reference; a direct current (DC)-voltage controller configured to receive the photovoltaic panel terminal voltage reference and the photovoltaic panel terminal voltage and output a duty ratio to cause an error between these values to become zero; a pulse width modulation (PWM) control signal generator configured to receive the duty ratio and output a PWM signal to control a DC/DC converter connected to the photovoltaic panel; the DC/DC converter configured to receive the PWM signals and perform CPG control; and a DC/AC inverter connected to the DC/DC converter and configured to convert DC power into AC power and output the AC power to an electrical grid.
摘要:
Apparatus for communicating across an isolation barrier. In one embodiment, the apparatus comprises a transformer having a first winding disposed on a first side of a printed circuit board (PCB) and coupled to a first local ground, and a second winding disposed on a second side of the PCB, the second side opposite to the first side, and coupled to a second local ground; a transmitter coupled to the first winding; and a receiver, coupled the second winding, that generates an output signal based on a signal received from the transmitter.
摘要:
A power converting apparatus for applying to a load an alternating-current voltage converted from a direct-current voltage includes an inverter that receives a PWM signal and applies the alternating-current voltage to the load and an inverter control unit that generates the PWM signal and supplies the PWM signal to the inverter. The frequency of the PWM signal is integer multiples of the frequency of the alternating-current voltage. The alternating-current voltage includes a plurality of positive pulses and a plurality of negative pulses in one cycle of the alternating-current voltage. The number of the positive pulses and the number of the negative pulses are equal.
摘要:
A power supply, including a resonant circuit having an output voltage and a current oscillating therethrough, and a voltage-fed half-bridge inverter producing a source voltage at an output coupled to the resonant circuit. The inverter is responsive to a driving signal. A driving circuit has a first input representing the sensed current oscillating through the resonant circuit, a second input representing the output voltage, and a reference voltage. The driving circuit includes compensation circuitry for maintaining the output voltage at the reference voltage and commanding a phase shift angle, and phase-shifting circuitry producing the driving signal based on a phase-shift of the sensed current. The amount of phase shift is commanded by the compensation circuitry.
摘要:
In a half-bridge self-exciting switching power supply, an over-voltage detector receives the power supply output and generates an over-voltage signal when the power supply output exceeds a preset limit. An over-voltage cut-off circuit is connected to a pulse-width-modulated controller and a driving unit of the switching power supply. The over-voltage cut-off circuit applies a pull-down voltage to the driving unit so as to inhibit self-exciting operation of first and second self-excited switching circuits of a half-bridge self-excited circuit, and disables the pulse-width-modulated controller upon reception of the over-voltage signal from the over-voltage detector. Therefore, when the pulse-width-modulated controller or the driving unit becomes defective, the switching power supply can be cut-off automatically in order to prevent damage to a load and to the other components of the switching power supply.
摘要:
In an electronic ballast, a half-bridge inverter drives a series-connected LC circuit near the LC circuit's natural resonance frequency. A relatively high-magnitude substantially sinusoidal 30 kHz output voltage develops across the tank-capacitor of the LC circuit. Each of several instant-start fluorescent lamps is series-connected with a current-limiting capacitor, thereby resulting in several lamp-capacitor series-combinations, each of which is connected across the tank-capacitor. The ballast is powered from ordinary 120 Volt/60 Hz power line voltage by way of a full-wave rectifier. At the DC output terminals of this rectifier exists a DC voltage having an instantaneous absolute magnitude equal to that of the power line voltage. Within the ballast, the inverter is powered from a DC supply voltage of constant magnitude about equal to the peak magnitude of the power line voltage. By interposing power-drawing circuitry in series with each lamp-capacitor combination, an auxiliary DC voltage is developed across a pair of auxiliary DC terminals. When no current flows from the auxiliary DC terminals, the magnitude of the auxiliary DC voltage is equal to that of the DC supply voltage. The maximum DC current available from the auxiliary DC terminals varies with the magnitude of the combined lamp currents and is adjusted so as to be equal to the peak magnitude of the current drawn from the power line; which current, as a result, is nearly sinusoidal.
摘要:
A microwave output stabilizing apparatus for a microwave oven comprises a rectifier circuit for rectifying power from an AC power supply into a constant DC voltage; an invertor circuit for generating a high frequency power supply by controlling the DC voltage at an intermittent output state; a high voltage transformer for stepping up the high frequency power supply; and magnetron drive circuit for rectifying the high frequency power supply and oscillating a magnetron. Also, an inverter control circuit detects the current flowing into the primary winding of the high voltage transformer, converts the detected current into a corresponding voltage, the corresponding voltage with a reference voltage, and controls the inverter circuit according to the results of the comparison. Further included are an anode current detecting circuit for detecting the anode current of the magnetron and converting the detected anode current into the corresponding voltage; and, a reference voltage adjusting circuit for evaluating the anode current and changing the reference voltage of the invertor control circuit in accordance with the results of the evaluation.
摘要:
A current-fed parallel-resonant self-oscillating electronic ballast includes four special switching devices, each serving the function of a single switching transistor in a full-bridge inverter. Each special switching device includes two series-connected field effect transistors synchronously gated via positive feedback of a sinusoidal output voltage. The reason for using two series-connected field-effect transistors in lieu of a single field-effect transistor of higher voltage rating relates to the fact that, for the DC supply voltages associated with certain electronic ballast circuits powered from commonly encountered power line voltages, field-effect transistors of lower voltage ratings (e.g., 400 Volt) are substantially lower in cost per-unit Volt-Ampere rating as compared with field-effect transistors of higher voltage ratings (e.g., 800 Volt). Thus, although such higher-voltage transistors are readily available, the net overall ballast cost will nevertheless be significantly reduced by using the special switching devices.