LITHIUM ION CONDUCTIVE CRYSTAL BODY AND ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY

    公开(公告)号:US20200303771A1

    公开(公告)日:2020-09-24

    申请号:US16897119

    申请日:2020-06-09

    摘要: To provide a lithium ion conductive crystal body having a high density and a large length and an all-solid state lithium ion secondary battery containing the lithium ion conductive crystal body. A Li5La3Ta2O12 crystal body, which is one example of the lithium ion conductive crystal body, has a relative density of 99% or more, belongs to a cubic system, has a garnet-related type structure, and has a length of 2 cm or more. The Li5La3Ta2O12 crystal body is grown by a melting method employing a Li5La3Ta2O12 polycrystal body as a raw material. With the growing method, a Li5La3Ta2O12 crystal body having a relative density of 100% can also be obtained. In addition, the all-solid state lithium ion secondary battery has a positive electrode, a negative electrode, and a solid electrolyte, in which the solid electrolyte contains the lithium ion conductive crystal body.

    LITHIUM-CONTAINING GARNET CRYSTAL BODY, METHOD FOR PRODUCING SAME, AND ALL-SOLID-STATE LITHIUM ION SECONDARY BATTERY

    公开(公告)号:US20170222258A1

    公开(公告)日:2017-08-03

    申请号:US15329750

    申请日:2015-07-30

    摘要: Provided is a high-density lithium-containing garnet crystal body. The lithium-containing garnet crystal body has a relative density of 99% or more, belongs to a tetragonal system, and has a garnet-related type structure. A method of producing a Li7La3Zr2O12 crystal, which is one example of this lithium-containing garnet crystal body, includes melting a portion of a rod-like raw material composed of polycrystalline Li7La3Zr2O12 belonging to a tetragonal system while rotating it on a plane perpendicular to the longer direction and moving the melted portion in the longer direction. The moving rate of the melted portion is preferably 8 mm/h or more but not more than 19 mm/h. The rotational speed of the raw material is preferably 30 rpm or more but not more than 60 rpm. By increasing the moving rate of the melted portion, decomposition of the raw material due to evaporation of lithium can be prevented and by increasing the rotational speed of the raw material, air bubbles can be removed.

    MULTILAYER BODY AND METHOD FOR PRODUCING SAME

    公开(公告)号:US20210013495A1

    公开(公告)日:2021-01-14

    申请号:US16971322

    申请日:2019-02-22

    摘要: A multilayer body is provided that is used as the negative electrode of a lithium-ion secondary battery that has a high capacity and is excellent in terms of safety, economic efficiency, and cycle characteristics. The multilayer body has a conductive substrate and a composite layer provided on the conductive substrate. The composite layer includes a plurality of particles of silicon oxide and a conductive substance present in gaps between the plurality of particles of silicon oxide. The average particle diameter of the particles of silicon oxide is 1.0 μm or less. The multilayer body further has a conductive layer that is provided on the composite layer and contains a conductive substance. The conductive layer has a thickness of 20 μm or less.