Abstract:
A LCD device that receives curing light sufficiently to thereby realize approximately uniform curing of the material of the sealing member without eliminating the conductive light-blocking members. A first substrate has a display area and a peripheral area located to surround the display area. The display area includes pixels arranged regularly. The peripheral area includes a sealing member, wiring lines connected to the pixels, and conductive light-blocking members R second substrate is coupled with the first substrate. A liquid crystal layer is formed between the first and second substrates. The sealing member is formed to overlap with the wiring lines and the light-blocking members in such a way that a non-overlapping area of the sealing member with the wiring lines and the light-blocking members is equal to 25% per unit area of the sealing member or greater.
Abstract:
Liquid crystal display device includes a lower-level layer such a scan line running in a first direction and an upper-level layer such a signal (data) line running in a second direction intersecting the first direction, these two layers crossing each other. An island region such a semiconductor layer is provided at the crossing portion of the lower-level and upper-level layers to intervene between the lower-level and upper-level layers. The island region has a first edge that extends in the first direction and a second edge that extends in the first direction and is different in coordinate in the second direction from the first edge. The upper-level layer being formed such that a pair of side edges defining the width of the upper-level layer cross respectively with the first and second edges of the island region. The island region may further have a third edge that extends in the second direction to connect the first and second edges.
Abstract:
In a semi-transmissive liquid crystal display device having a reflective region 5 and a transmissive region therein, a one-half wavelength plate 29 is disposed between a lower substrate 11 and a polarizer 21a provided on a side of the lower substrate. This makes liquid crystal molecules in at least the transmissive region 6 driven by a horizontal electric field and allows the device to operate in a normally-black mode in both the reflective region 5 and the transmissive region 6, realizing a semi-transmissive liquid crystal display device having wide viewing angle characteristics.
Abstract:
A dedicated control signal electrode is provided between pixel electrodes, and a strong electric field is generated between the control signal electrode and the common electrode to quickly and securely make an initial transition from liquid crystal molecules in a splay alignment state to the same in a bend alignment state. In addition, generating a strong electric field between the control signal electrode and the common electrode even during operation for displaying an image makes liquid crystal molecules stably stay in a bend alignment state. In this case the scan signal electrode, the video signal electrode and the common electrode, which are required for displaying an image, are not used to make a transition from liquid crystal molecules in a splay alignment state to the same in a bend alignment state and make the same stay in a bend alignment state.
Abstract:
An in-plane-switching liquid crystal display unit has a two-dimensional matrix of pixel regions each including a first auxiliary region and a second auxiliary region. When no electric field is applied, liquid crystal molecules in the first and second auxiliary regions are directed in respective orientations that lie at 90null with respect to each other. When a voltage is applied, the liquid crystal molecules are rotated in the same direction while maintaining their orientations in the first and second auxiliary regions at 90null with respect to each other. Alternatively, the liquid crystal molecules in the first and second auxiliary regions are directed in the same orientation when no electric field is applied, and when a voltage is applied, the liquid crystal molecules are rotated opposite directions while maintaining their orientations in symmetric relationship.
Abstract:
An active matrix liquid crystal display panel by which a good display characteristic can be obtained without suffering from gradation reversal over a wide visibility angle range. A liquid crystal layer 4 is formed such that the thickness thereof varies in accordance with transmission wavelengths of color layers 6, 7 and 8 so that a very good display which does not exhibit any coloring in whichever direction it is viewed may be obtained. An active matrix substrate A includes a plurality of opposing electrodes 2, a plurality of pixel electrodes 3 parallel to the opposing electrodes 2, a thin film transistor, and an orientation film 23 all formed on a glass substrate 10. A color filter substrate C includes an orientation film 56 provided on one surface of another glass substrate 10 and an optical compensation layer 35 provided on the other surface of the glass substrate 10 and formed from a plastic film. The two substrates are disposed such that the orientation films thereof oppose each other, and polarization plates 34 and 5 are disposed on the outer sides of the two substrates, and a liquid crystal layer 4 having a positive refractive index anisotropy is provided between the orientation films 23. The optical compensation layer 35 has a negative one axial refractive index anisotropy and can cancel a retardation produced in the liquid crystal layer 4 thereby to suppress white floating of a black display portion.
Abstract:
A thin film transistor is designed in such a manner that a semiconductor region includes source and drain electrodes in a channel width direction and further, a planar source-side overlap area constructed by a gate electrode, the source electrode and the semiconductor region and a planar drain-side overlap area constructed by the gate electrode, the drain electrode and the semiconductor region exist. An optimal overlap length of one of the source-side and drain-side overlap areas in a channel length direction is determined, for instance, to be 4 nullm, for a light incident on a channel portion of the thin film transistor to have a light intensity below or equal to 0.2% of a light intensity of the backlight incident toward the thin film transistor, thereby reducing a light-induced OFF leak current sufficiently and further improving flickering and display uniformity.
Abstract:
An OCB type liquid crystal display having first and second substrates opposed to each other via a liquid crystal layer such that rubbing directions of the first and second substrates become parallel to each other, a plurality of pixel electrodes which correspond to respective pixels, and a common electrode formed on the second substrate which receives a reference voltage commonly to a plurality of the pixels. A first transition nucleus area is formed in the first substrate layer and has a plurality of continuous slant surfaces having a saw-tooth cross sectional profile, and a second transition nucleus area is formed in the second substrate and has a plurality of continuous slant surfaces having a saw-tooth cross sectional profile. The slant surfaces in the first and second transition nucleus areas oppose to each other and slope toward mutually opposite angular directions.
Abstract:
An in-plane switching type liquid crystal display device includes (a) a first film composed of inorganic material, (b) a second film composed of organic material, both of the first and second films being to be formed below an electrode as underlying films, (c) a first vernier formed on the first film for measuring a width of the electrode, and (d) a second vernier formed on the second film for measuring a width of the electrode.
Abstract:
A liquid crystal display apparatus has a pair of substrates opposing to each other and a liquid crystals sandwiched between the pair of substrates. One side of substrate is provided with gate lines and signal lines which approximately cross each other. TFTs are provided close to intersection portion of the gate line and the signal line. Pixel electrodes and common electrodes are provided at each pixel enclosed by the gate line and the signal line. Each of pixel electrodes and common electrodes has bent points more than one and is alternately formed in parallel with each other. Both the pixel electrode and the common electrode are made up of bent sections and projected sections projecting toward concave sections of opposite electrodes from convex side top sections of the bent sections. In the liquid crystal display apparatus, improvement of visual angle characteristics and response characteristics is planned in such a way that the projected section allows electric field close to the bent section to be stabilized, and allows electric field strength to be enhanced.