Abstract:
In a semi-transmissive liquid crystal display device having a reflective region 5 and a transmissive region therein, a one-half wavelength plate 29 is disposed between a lower substrate 11 and a polarizer 21a provided on a side of the lower substrate. This makes liquid crystal molecules in at least the transmissive region 6 driven by a horizontal electric field and allows the device to operate in a normally-black mode in both the reflective region 5 and the transmissive region 6, realizing a semi-transmissive liquid crystal display device having wide viewing angle characteristics.
Abstract:
An active matrix liquid crystal display panel by which a good display characteristic can be obtained without suffering from gradation reversal over a wide visibility angle range. A liquid crystal layer 4 is formed such that the thickness thereof varies in accordance with transmission wavelengths of color layers 6, 7 and 8 so that a very good display which does not exhibit any coloring in whichever direction it is viewed may be obtained. An active matrix substrate A includes a plurality of opposing electrodes 2, a plurality of pixel electrodes 3 parallel to the opposing electrodes 2, a thin film transistor, and an orientation film 23 all formed on a glass substrate 10. A color filter substrate C includes an orientation film 56 provided on one surface of another glass substrate 10 and an optical compensation layer 35 provided on the other surface of the glass substrate 10 and formed from a plastic film. The two substrates are disposed such that the orientation films thereof oppose each other, and polarization plates 34 and 5 are disposed on the outer sides of the two substrates, and a liquid crystal layer 4 having a positive refractive index anisotropy is provided between the orientation films 23. The optical compensation layer 35 has a negative one axial refractive index anisotropy and can cancel a retardation produced in the liquid crystal layer 4 thereby to suppress white floating of a black display portion.
Abstract:
In a liquid crystal display device comprising first and second substrates having first and second principal surfaces which are opposed to each other with a space left therebetween, first and second alignment layers are formed on the first and the second principal surfaces of the first and the second substrates. The first alignment layer is subjected to a first aligning treatment in a first aligning treatment direction while a second alignment layer is subjected to a second aligning treatment in a second aligning treatment direction which shifts from the first aligning treatment direction by a predetermined slight angle. Interposed between the first and the second alignment layers, a liquid crystal layer comprises a plurality of liquid crystal molecules each of which is twist aligned by a twist angle equal to the predetermined slight angle.
Abstract:
An in-plane-switching liquid crystal display unit has a two-dimensional matrix of pixel regions each including a first auxiliary region and a second auxiliary region. When no electric field is applied, liquid crystal molecules in the first and second auxiliary regions are directed in respective orientations that lie at 90null with respect to each other. When a voltage is applied, the liquid crystal molecules are rotated in the same direction while maintaining their orientations in the first and second auxiliary regions at 90null with respect to each other. Alternatively, the liquid crystal molecules in the first and second auxiliary regions are directed in the same orientation when no electric field is applied, and when a voltage is applied, the liquid crystal molecules are rotated opposite directions while maintaining their orientations in symmetric relationship.
Abstract:
In an in-plane switching (IPS) mode active matrix type liquid crystal display device, data lines 24 supplied with data signals, common electrode wiring portions 26a and 26b applied with a reference voltage, a common electrode 26, pixel electrodes corresponding to pixels to be displayed, scanning lines 28 supplied with scan signals and TFT's 50 are provided on an active element substrate 11. The common electrode wiring portions 26a and 26b are formed by using a first metal layer, extend in parallel to the scanning line and connected to a common electrode potential at a peripheral portion thereof. Protruded portions 299a and 299b are formed in at least one of the common electrode wiring portions 26a and 26b in such a way that the protruded portions are positioned on both sides of the data line 24 to be formed later. Unevenness of display of the display device is reduced and the aperture ratio thereof is improved.
Abstract:
The present invention provides a liquid crystal display apparatus of a lateral direction electric field drive type comprising an array substrate including a plurality of TFTs each having a gate electrode, a gate insulation film, a semiconductor layer, and a source electrode/drain electrode formed on a transparent substrate and an opposing substrate arrange so as to oppose to the array substrate, wherein the semiconductor layer has a width in the gate length direction identical to the gate length.
Abstract:
A signal correcting circuit, which adds a correction value generated based on a signal stored in a frame memory to an input signal and outputs a resultant signal, is used to correct image data which is an input signal to a liquid crystal display to thereby completely compensate for the influence of the asymmetry of the input signal on the liquid crystal display. This prevents generation of residual images and flickering of the screen.
Abstract:
An in-plane switching mode active matrix type liquid crystal display device includes a first substrate, a second substrate located opposing the first substrate, and a liquid crystal layer sandwiched between the first and second substrates. The first substrate includes a thin film transistor, a pixel electrode each associated to a pixel to be driven, a common electrode to which a reference voltage is applied, data lines, a scanning line, and common electrode lines. Molecular axes of liquid crystal are rotated in a plane parallel with the first substrate by an electric field substantially parallel with a plane of the first substrate to thereby display certain images. The common electrode is composed of transparent material, and are formed on a layer located closer to the liquid crystal layer than the data lines. The common electrode entirely overlaps the data lines except an area where the data lines are located in the vicinity of the scanning line. The liquid crystal display device further includes a light-impermeable layer in an area where the common electrode entirely overlaps the data lines. The light-impermeable layer is comprised of a black matrix layer having a width smaller than a width of the common electrode.
Abstract:
In an active matrix liquid crystal display device, a component of an electric field generated between a drain electrode and source electrode of a TFT element for controlling power supply to a pixel electrode, which is parallel to substrates, has a direction identical with a rubbing direction of a liquid crystal layer.