Abstract:
Systems and methods for a multi-entity tracking transformer model (MCTR). To train the MCTR, processing track embeddings and detection embeddings of video feeds obtained from multiple cameras to generate updated track embeddings with a tracking module. The updated track embeddings can be associated with the detection embeddings to generate track-detection associations (TDA) for each camera view and camera frame with an association module. A cost module can calculate a differentiable loss from the TDA by combining a detection loss, a track loss and an auxiliary track loss. A model trainer can train the MCTR using the differentiable loss and contiguous video segments sampled from a training dataset to track multiple objects with multiple cameras.
Abstract:
Methods and systems for deep learning include encoding input data, using a data encoder machine learning model, to generate an embedded representation of the input data. A correction is added to the input data with a rule encoder machine learning model to generate a corrected representation. The corrected representation is decoded using a data decoder machine learning model to generate a prediction. Parameters of the rule encoder machine learning model are updated using a loss function that encodes symbolic information relating to the prediction.
Abstract:
A false alarm reduction system and method are provided for reducing false alarms in an automatic defect detection system. The false alarm reduction system includes a defect detection system, generating a list of image boxes marking detected potential defects in an input image. The false alarm reduction system further includes a feature extractor, transforming each of the image boxes in the list into a respective set of numerical features. The false alarm reduction system also includes a classifier, computing as a classification outcome for the each of the image boxes whether the detected potential defect is a true defect or a false alarm responsive to the respective set of numerical features for each of the image boxes.
Abstract:
A false alarm reduction system is provided that includes a processor cropping each input image at randomly chosen positions to form cropped images of a same size at different scales in different contexts. The system further includes a CONDA-GMM, having a first and a second conditional deep autoencoder for respectively (i) taking each cropped image without a respective center block as input for measuring a discrepancy between a reconstructed and a target center block, and (ii) taking an entirety of cropped images with the target center block. The CONDA-GMM constructs density estimates based on reconstruction error features and low-dimensional embedding representations derived from image encodings. The processor determines an anomaly existence based on a prediction of a likelihood of the anomaly existing in a framework of a CGMM, given the context being a representation of the cropped image with the center block removed and having a discrepancy above a threshold.
Abstract:
A method for using a multi-hop reasoning framework to perform multi-step compositional long-term reasoning is presented. The method includes extracting feature maps and frame-level representations from a video stream by using a convolutional neural network (CNN), performing object representation learning and detection, linking objects through time via tracking to generate object tracks and image feature tracks, feeding the object tracks and the image feature tracks to a multi-hop transformer that hops over frames in the video stream while concurrently attending to one or more of the objects in the video stream until the multi-hop transformer arrives at a correct answer, and employing video representation learning and recognition from the objects and image context to locate a target object within the video stream.
Abstract:
Systems and methods for diagnosing a patient condition include a medical imaging device for generating an anatomical image. A reconstructor reconstructs the anatomical image by reconstructing portions of the anatomical image to be a healthy representation of the portions and merging the portions into the anatomical image to generate a reconstructed image. A contrastor contrasts the anatomical image with the reconstructed image to generate an anomaly map indicating locations of difference between the anatomical image and the reconstructed image. An anomaly tagging device tags the locations of difference as anomalies corresponding to anatomical abnormalities in the anatomical image, and a display displays the anatomical image with tags corresponding to the anatomical abnormalities.
Abstract:
Systems and methods for predicting new relationships in the knowledge graph, including embedding a partial triplet including a head entity description and a relationship or a tail entity description to produce a separate vector for each of the head, relationship, and tail. The vectors for the head entity, relationship, and tail entity can be combined into a first matrix, and adaptive kernels generated from the entity descriptions can be applied to the matrix through convolutions to produce a second matrix having a different dimension from the first matrix. An activation function can be applied to the second matrix to obtain non-negative feature maps, and max-pooling can be used over the feature maps to get subsamples. A fixed length vector, Z, flattens the subsampling feature maps into a feature vector, and a linear mapping method is used to map the feature vectors into a prediction score.
Abstract:
Systems and methods for detecting and correcting defective products include capturing at least one image of a product with at least one image sensor to generate an original image of the product. An encoder encodes portions of an image extracted from the original image to generate feature space vectors. A decoder decodes the feature space vectors to reconstruct the portions of the image into reconstructed portions by predicting defect-free structural features in each of the portions according to hidden layers trained to predict defect-free products. Each of the reconstructed portions are merged into a reconstructed image of a defect-free representation of the product. The reconstructed image is communicated to a contrastor to detect anomalies indicating defects in the product.
Abstract:
Methods and systems for displaying dependencies within data and illustrating differences between a plurality of data sets are disclosed. In accordance with one such method, a plurality of data sets are received for the generation of a plurality of dependency networks in accordance with a graphical modeling scheme. The method further includes receiving a selection of a value of a parameter that adjusts a number of differences between the dependency networks in accordance with the graphical modeling scheme. In addition, at least one version of the dependency networks is generated based on the selected value of the parameter. Further, the one or more versions of the dependency networks is output to permit a user to analyze distinctions between the dependency networks.
Abstract:
Methods and systems for detecting and correcting anomalies include detecting an anomaly in a cyber-physical system, based on a classification of time series information from sensors that monitor the cyber-physical system as being anomalous. A similarity graph is determined for each of the sensors, based on the time series information. A subset of the sensors that are related to the classification is selected, based on a spectral embedding of the similarity graphs. A corrective action is performed responsive to the detected anomaly, prioritized according to the selected subset.