Network gateway spoofing detection and mitigation

    公开(公告)号:US10999323B2

    公开(公告)日:2021-05-04

    申请号:US16101834

    申请日:2018-08-13

    Abstract: Endpoint security systems and methods include a distance estimation module configured to calculate a travel distance between a source Internet Protocol (IP) address and an IP address for a target network endpoint system from a received packet received by a network gateway system based on time-to-live (TTL) information from the received packet. A machine learning model is configured to estimate an expected travel distance between the source IP address and the target network endpoint system IP address based on a sparse set of known source/target distances. A spoof detection module is configured to determine that the received packet has a spoofed source IP address based on a comparison between the calculated travel distance and the expected travel distance. A security module is configured to perform a security action at the network gateway system responsive to the determination that the received packet has a spoofed source IP address.

    SEQUENCE MODELS FOR AUDIO SCENE RECOGNITION

    公开(公告)号:US20210065735A1

    公开(公告)日:2021-03-04

    申请号:US16997314

    申请日:2020-08-19

    Abstract: A method is provided. Intermediate audio features are generated from an input acoustic sequence. Using a nearest neighbor search, segments of the input acoustic sequence are classified based on the intermediate audio features to generate a final intermediate feature as a classification for the input acoustic sequence. Each segment corresponds to a respective different acoustic window. The generating step includes learning the intermediate audio features from Multi-Frequency Cepstral Component (MFCC) features extracted from the input acoustic sequence. The generating step includes dividing the same scene into the different acoustic windows having varying MFCC features. The generating step includes feeding the MFCC features of each of the different acoustic windows into respective LSTM units such that a hidden state of each respective LSTM unit is passed through an attention layer to identify feature correlations between hidden states at different time steps corresponding to different ones of the different acoustic windows.

    Sequence models for audio scene recognition

    公开(公告)号:US10930301B1

    公开(公告)日:2021-02-23

    申请号:US16997314

    申请日:2020-08-19

    Abstract: A method is provided. Intermediate audio features are generated from an input acoustic sequence. Using a nearest neighbor search, segments of the input acoustic sequence are classified based on the intermediate audio features to generate a final intermediate feature as a classification for the input acoustic sequence. Each segment corresponds to a respective different acoustic window. The generating step includes learning the intermediate audio features from Multi-Frequency Cepstral Component (MFCC) features extracted from the input acoustic sequence. The generating step includes dividing the same scene into the different acoustic windows having varying MFCC features. The generating step includes feeding the MFCC features of each of the different acoustic windows into respective LSTM units such that a hidden state of each respective LSTM unit is passed through an attention layer to identify feature correlations between hidden states at different time steps corresponding to different ones of the different acoustic windows.

    WORD-OVERLAP-BASED CLUSTERING CROSS-MODAL RETRIEVAL

    公开(公告)号:US20210027019A1

    公开(公告)日:2021-01-28

    申请号:US16918353

    申请日:2020-07-01

    Abstract: A system for cross-modal data retrieval is provided that includes a neural network having a time series encoder and text encoder which are jointly trained using an unsupervised training method which is based on a loss function. The loss function jointly evaluates a similarity of feature vectors of training sets of two different modalities of time series and free-form text comments and a compatibility of the time series and the free-form text comments with a word-overlap-based spectral clustering method configured to compute pseudo labels for the unsupervised training method. The computer processing system further includes a database for storing the training sets with feature vectors extracted from encodings of the training sets. The encodings are obtained by encoding a training set of the time series using the time series encoder and encoding a training set of the free-form text comments using the text encoder.

Patent Agency Ranking