Abstract:
A computer-implemented method, system, and computer program product are provided for anomaly detection in a power system. The method includes receiving, by a processor-device, a plurality of measurements from a plurality of meters throughout the power system. The method also includes generating, by the processor-device, temporal causal networks based on pair-wise relationships between the plurality of measurements from the plurality of meters over time. The method additionally includes determining, by the processor-device, invariant relationships for the plurality of meters between the temporal causal networks. The method further includes predicting, by the processor-device, an anomaly from the invariant relationships for the plurality of meters with a residual anomaly threshold. The method also includes disabling one of the plurality of meters that originated the anomaly.
Abstract:
A computer-implemented method, system, and computer program product are provided for demand charge management. The method includes receiving an active power demand for a facility, a current load demand charge threshold (DCT) profile for the facility, and a plurality of previously observed load DCT profiles. The method also includes generating a forecast model from a data set of DCT values based on the current load DCT profile for the facility and the plurality of previously observed load DCT profiles. The method additionally includes forecasting a monthly DCT value for the facility using the forecast model. The method further includes preventing actual power used from a utility from exceeding the next month DCT value by discharging a battery storage system into a behind the meter power infrastructure for the facility.
Abstract:
Systems and methods for controlling behind-the meter energy storage/management systems (EMSs) for battery-optimized demand charge minimized operations, including determining an optimal monthly demand charge threshold based on a received customer load profile and a customer load profile and savings. The determining of the monthly demand charge threshold includes iteratively performing daily optimizations to determine a daily optimal demand threshold for each day of a month, selecting a monthly demand threshold by clustering the daily optimal demand thresholds for each day of the month into groups, and determining a dominant group representative of a load pattern for a next month. A mean demand threshold for the dominant group is selected as the monthly demand threshold, and continuous battery-optimized demand charge minimized EMS operations are provided based on the monthly demand threshold using a real-time controller configured for overriding the optimal charging/discharging profiles when a monthly demand threshold violation is detected.
Abstract:
A computer-implemented method, system, and computer program product are provided for anomaly detection in a power system. The method includes receiving, by a processor-device, a plurality of measurements from a plurality of meters throughout the power system. The method also includes generating, by the processor-device, temporal causal networks based on pair-wise relationships between the plurality of measurements from the plurality of meters over time. The method additionally includes determining, by the processor-device, invariant relationships for the plurality of meters between the temporal causal networks. The method further includes predicting, by the processor-device, an anomaly from the invariant relationships for the plurality of meters with a residual anomaly threshold. The method also includes disabling one of the plurality of meters that originated the anomaly.
Abstract:
Aspects of the present disclosure describe methods and systems for improved control strategies for Dynamic Frequency Control (DFC) of Energy Storage (ES) devices which may be used to determine an amount of intertial support required from ES to provide frequency regulation based on type of disturbance and frequency control system of a microgrid. A case study showing the control strategy for DFC scheme is presented.
Abstract:
A controller used in microgrid systems that includes a primary control module and a secondary control module. The primary control module may employ a primary consensus control to control at least one of a real power and reactive power sharing in at least one distributed generator system of a microgrid. The secondary control module may employ a secondary consensus control to maintain at least one of voltage and frequency in the microgrid to a nominal value.
Abstract:
Systems and methods for minimizing demand charges, including determining one or more optimal monthly demand charge thresholds based on historical load data, time of use charges, demand charges, and energy storage unit size for one or more end users. A grid power dispatch setpoint is calculated for a particular time step based on a daily load forecast and a daily economic dispatch solution based on the determined optimal monthly demand charge thresholds. A grid power dispatch setpoint for a subsequent time step is determined by iteratively solving the daily energy dispatch for the subsequent time step to determine an optimal grid power dispatch setpoint. Energy and demand charges are minimized by controlling charging and discharging operations for the energy storage unit in real-time based on the determined optimal grid power dispatch setpoint.
Abstract:
A multilayer control framework for a power system includes a hybrid storage system (HSS) to store energy using a plurality of energy storage devices; a local controller coupled to the HSS to smooth output power of wind or photovoltaic energy sources while regulating a State of Charge (SoC) of the HSS; and a system-wide controller coupled to the HSS activated upon an occurrence of one or more energy disturbances with a control strategy designed to improve system dynamics to address the one or more energy disturbances.
Abstract:
A modular multilevel converter for hybrid energy storage includes three phases connectable in series to a battery, and in parallel to one another. Each phase includes at least two arms of sub-modules and buffer inductors, and each of the sub-modules comprises a half-bridge and an ultracapacitor. A two layer controller, including a coordination layer and a converter layer, is configured to independently control battery output power and ultracapacitor output power, and to distribute a power load between the battery and the ultracapacitor to optimize the performance of a hybrid energy storage system.
Abstract:
A method and system are provided. The method includes co-optimizing a placement, a sizing, and an operation schedule of at least one energy storage system in an energy distribution system. The energy distribution system further has at least one renewable energy resource and at least one distributed energy resource. The co-optimizing step includes generating a placement-sizing-scheduling co-optimization model of the at least one energy storage system by integrating therein a distribution optimal power flow optimization model of the energy distribution system and components thereof. The distribution optimal power flow optimization model integrates therein at least an energy storage system model, a renewable energy resource model, and a distributed energy resource model. The co-optimizing step further includes optimally determining, using a processor-based placement-sizing-scheduling optimizer, the placement, the sizing, and the operation schedule of the at least one energy storage system based on the placement-sizing-scheduling co-optimization model.