Abstract:
A method, non-transitory computer readable medium, and device that assists with performing global data deduplication on data blocks across different volumes includes identifying at least two data blocks stored in two or more storage volumes. It is determined whether the at least two data blocks are classified as a shared data block. A new data volume signature is created when the at least two data blocks are determined to be shared. One of the at least two data blocks that are determined to be shared is deleted and the other one of the at least two data blocks and the created signature in one of the two or more storage volumes is stored.
Abstract:
Methods and systems for a storage server are provided. One method includes storing data at a first storage tier by a processor executable storage operating system; tracking the data stored at the first storage tier for moving the data to a second storage tier; transferring the data from the first storage tier to the second storage tier; and updating a data structure that tracks a transfer block number of a block that stores the data, where the transfer block number is based on a virtual identifier, a generation count and an offset value of a storage chunk that is a portion of a physical volume block number address space.
Abstract:
Presented herein are mass data storage systems, file system protocols, non-transitory machine readable devices, and methods for storing data blocks in data file systems. Methods for compressing snapshot data in a data file system are disclosed which include: loading a snapshot file with one or more data blocks, the snapshot representing a state of the data file system at a point in time; determining if at least one of the snapshot data blocks is less than a predetermined byte value; responsive to a snapshot data block having a size that is less than the predetermined byte value, identifying a packed block configured to store data chunks from plural distinct snapshots and having available sufficient storage space to store the snapshot data block; and adding to the packed block the snapshot data block and lost-write context information corresponding to the snapshot data block.
Abstract:
Presented herein are methods, non-transitory computer readable media, and devices for writing, allocating, and caching contents of a hard disk drive block on a solid state drive cache in a memory system, without requiring an inode context. The method includes: identifying one or more HDD blocks for caching by a storage server; assigning a physical block number to each identified HDD block; linking the identified HDD blocks to one another; allocating an SSD physical block number for each linked HDD block; and storing the physical block number for each identified HDD block and the physical block number for each corresponding SSD block within a cache map.
Abstract:
Conventional storage filers utilize a data reading process that requires client read request messages to be suspended in the operating system while the data is retrieved from the physical storage system. Then, once the operating system retrieves the data from the physical storage system, the operating system must restart the suspended read message in order to forward the retrieved data to the client. Accordingly, the inventors have developed a system and method that allows the physical storage system's server to send the data directly to the client rather than routing back through the operating system.
Abstract:
Presented herein are mass data storage systems, file system protocols, non-transitory machine readable devices, and methods for storing data blocks in data file systems. Methods for compressing snapshot data in a data file system are disclosed which include: loading a snapshot file with one or more data blocks, the snapshot representing a state of the data file system at a point in time; determining if at least one of the snapshot data blocks is less than a predetermined byte value; responsive to a snapshot data block having a size that is less than the predetermined byte value, identifying a packed block configured to store data chunks from plural distinct snapshots and having available sufficient storage space to store the snapshot data block; and adding to the packed block the snapshot data block and lost-write context information corresponding to the snapshot data block.
Abstract:
Methods, non-transitory computer readable media, and computing devices that accelerate data access requests. With this technology, a hierarchy of a objects is inserted into a location database. Each of at least a subset of the objects comprises a physical storage location for data stored in a filesystem. One or more of the objects includes an object version number and a parent version number of a parent one of the objects. A determination is made when an invalidation event has occurred in the filesystem. The invalidation event is associated with one of the objects. The object version number for the one of the objects is modified to invalidate one or more of the subset of the objects, when the determining indicates that the invalidation event has occurred in the filesystem.
Abstract:
A file system layout apportions an underlying physical volume into one or more virtual volumes of a storage system. The virtual volumes having a file system and one or more files organized as buffer trees, the buffer trees utilizing indirect blocks to point to the data blocks. The indirect block at the level above the data blocks are grouped into compression groups that point to a set of physical volume block number (pvbn) block pointers.
Abstract:
Presented herein are mass data storage networks, file system protocols, non-transitory machine readable devices, and methods for storing data blocks in mass data storage systems. Methods for storing data blocks in a file system are disclosed which include: receiving by storage controller of the data storage system a request to write a data file to a system storage module; determining whether the data file includes a sub-K data chunk that is less than approximately four kilobytes; identifying a packed block that stores a plurality of sub-K data chunks and has sufficient storage space available to store the sub-K data chunk; and placing, by the storage controller in the packed block, the sub-K data chunk and a corresponding data length and a respective offset identifying a location of the sub-K data chunk in the packed block.
Abstract:
Conventional storage filers utilize a data reading process that requires client read request messages to be suspended in the operating system while the data is retrieved from the physical storage system. Then, once the operating system retrieves the data from the physical storage system, the operating system must restart the suspended read message in order to forward the retrieved data to the client. Accordingly, the inventors have developed a system and method that allows the physical storage system's server to send the data directly to the client rather than routing back through the operating system.