摘要:
The present invention has an object of providing an X-ray CT imaging device which can direct X-ray to an area of interest appropriately even when, for example, the height of the area of interest with respect to the X-ray detector, which is revolving, varies with respect to the revolution direction, and thus can reduce the amount of unnecessary exposure to the X-ray and can perform X-ray imaging of the area of interest with certainty. In an X-ray CT imaging device for performing X-ray CT imaging of a CT imaging area of a subject, during the X-ray CT imaging when a revolving arm is revolving, the expansion in a length direction of an X-ray cone beam, which is to be restricted by length direction blocking plates, is adapted to the shape of the CT imaging area in accordance with the revolution position of the revolving arm.
摘要:
An image processing device acquiring pseudo projection data by calculation when a virtual metallic body having a predetermined X-ray absorption coefficient is set in a photographic region of X-ray CT photography in a pseudo manner based on projection data, and the image processing device reconstructing the pseudo projection data to acquire pseudo CT image data. The image processing device acquires luminance (virtual metallic body luminance) of a virtual metallic body in the pseudo CT image data, and specifies a position of a metal equivalent region having luminance corresponding to the virtual metallic body luminance in normal CT image data. The image processing device acquires correction projection data by performing correction processing to the luminance of the metal equivalent region in the normal projection data, and the image processing device reconstructs the correction projection data to acquire correction CT image data.
摘要:
An image processing device acquiring pseudo projection data by calculation when a virtual metallic body having a predetermined X-ray absorption coefficient is set in a photographic region of X-ray CT photography in a pseudo manner based on projection data, and the image processing device reconstructing the pseudo projection data to acquire pseudo CT image data. The image processing device acquires luminance (virtual metallic body luminance) of a virtual metallic body in the pseudo CT image data, and specifies a position of a metal equivalent region having luminance corresponding to the virtual metallic body luminance in normal CT image data. The image processing device acquires correction projection data by performing correction processing to the luminance of the metal equivalent region in the normal projection data, and the image processing device reconstructs the correction projection data to acquire correction CT image data.
摘要:
A medical X-ray CT photography apparatus body includes a turning arm that supports an X-ray generator and an X-ray detector while the X-ray generator and the X-ray detector are opposed to each other with the subject interposed therebetween, a bracket part that fixedly supports an axial center position of a turning shaft provided in the turning arm, and a support drive part that turns the turning arm about the turning shaft with respect to the bracket part. The medical X-ray CT photography apparatus body also includes a subject chair on which the subject sits, a chair moving mechanism that linearly moves the subject chair in a front-back direction (Y-axis direction) of the subject, and a main-body controller that performs the panoramic X-ray photography by controlling the chair moving mechanism and the support drive part in conjunction with each other.
摘要:
An X-ray CT photographic apparatus including: a beam shaping mechanism that regulates an irradiation range of an X-ray generated from an X-ray generator and shapes the X-ray into an X-ray cone beam; and a main body controller that changes a read region, where an X-ray detection signal is read in the X-ray detector, according to the irradiation range of the X-ray cone beam. The main body controller changes the irradiation range of the X-ray cone beam to an x-axis direction during an X-ray CT photography such that only a set CT photographic region is irradiated with the X-ray cone beam according to the set CT photographic region input through a CT photographic region setting unit. The main body controller changes a read region in an X-ray detector with respect to the x-axis direction in a detection surface of the X-ray detector during the X-ray CT photography.
摘要:
An X-ray CT photographic apparatus including: a beam shaping mechanism that regulates an irradiation range of an X-ray generated from an X-ray generator and shapes the X-ray into an X-ray cone beam; and a main body controller that changes a read region, where an X-ray detection signal is read in the X-ray detector, according to the irradiation range of the X-ray cone beam. The main body controller changes the irradiation range of the X-ray cone beam to an x-axis direction during an X-ray CT photography such that only a set CT photographic region is irradiated with the X-ray cone beam according to the set CT photographic region input through a CT photographic region setting unit. The main body controller changes a read region in an X-ray detector with respect to the x-axis direction in a detection surface of the X-ray detector during the X-ray CT photography.
摘要:
According to a dental image display device, a dental surgical operation device, and a dental image display method, a 2D captured image of a tooth as a surgical operation target that is captured with visible light in an articulation face direction, and an articulation face direction converted 2D image obtained as a result of displaying 3D information, which is acquired on the tooth and includes information on a root canal inside the tooth, two-dimensionally on a predetermined plane in the articulation face direction, are displayed in correspondence with each other on a monitor.
摘要:
According to a dental image display device, a dental surgical operation device, and a dental image display method, a 2D captured image of a tooth as a surgical operation target that is captured with visible light in an articulation face direction, and an articulation face direction converted 2D image obtained as a result of displaying 3D information, which is acquired on the tooth and includes information on a root canal inside the tooth, two-dimensionally on a predetermined plane in the articulation face direction, are displayed in correspondence with each other on a monitor.