Abstract:
A sheet-like hemostatic material is provided with: an adhesive layer which serves as an affixing surface to a bleeding site and which is formed from at least poly-γ-glutamic acid (γ-PGA); and a covering layer which is a sheet formed from at least one biodegradable material (covering material) other than γ-PGA, and which serves as an opposite surface to the affixing surface. At least one of the adhesive layer and the covering layer is a single sheet. If the adhesive layer is a single sheet, the adhesive layer should be a sponge-like sheet, and if the adhesive layer is a partial layer, the adhesive layer should be a sponge-like sheet or a nonporous layer. Alternatively, in another sheet-like hemostatic material, a sheet which is formed from at least poly-γ-glutamic acid (γ-PGA) and to which at least one of a saccharide and collagen has been added is provided as the adhesive layer.
Abstract:
Provided is a method for preventing postoperative adhesion of an organ in a wound site using the application of an antiadhesive material thereto. The antiadhesive material contains a poly-γ-glutamic acid having a weight-average molecular weight of 600,000 to 13,000,000, or a kinematic viscosity at 37° C. of 2 cSt to 15 cSt when dissolved in distilled water at a concentration of 0.05% by mass and/or a salt thereof, as an effective ingredient. The antiadhesive material may be in a form such as powder, and therefore, for example, is easy to handle even in relatively localized surgery such as endoscopic surgery and can more reliably prevent adhesion.
Abstract:
An antiadhesive material is provided and contains a poly-γ-glutamic acid having a weight-average molecular weight of 600,000 to 13,000,000, or a kinematic viscosity at 37° C. of 2 cSt to 15 cSt when dissolved in distilled water at a concentration of 0.05% by mass and/or a salt thereof, as an effective ingredient. The antiadhesive material may have any form such as powder or gel form, and therefore, for example, is easy to handle even in relatively localized surgery such as endoscopic surgery and can more reliably prevent adhesion.
Abstract:
Provided is a method for preventing postoperative adhesion of an organ in a wound site using the application of an antiadhesive material thereto. The antiadhesive material contains a poly-γ-glutamic acid having a weight-average molecular weight of 600,000 to 13,000,000, or a kinematic viscosity at 37° C. of 2 cSt to 15 cSt when dissolved in distilled water at a concentration of 0.05% by mass and/or a salt thereof, as an effective ingredient. The antiadhesive material may be in a form such as powder, and therefore, for example, is easy to handle even in relatively localized surgery such as endoscopic surgery and can more reliably prevent adhesion.
Abstract:
Provided is an advanced heart failure treatment material, as a myocardial/cardiovascular regeneration device, that self-assembles, which can improve the universality and be used in an emergency by commercialization with no need of cell-culturing (cell-free) by controlling stem cells, and has a high therapeutic effect on the fundamental treatment of intractable cardiovascular diseases, in particular, advanced heart failure, in which not only the saving of lives but also improving the patient's quality of life (QOL) are urgent issues. The advanced heart failure treatment material includes a pharmaceutical agent, an agent holding for the pharmaceutical agent, and a myocardial support device.
Abstract:
An adhesion preventive kit and a method of preventing adhesion are provided which have a preventive effect on adhesion in a surrounding part of an edge of an injured or deficient tissue in guided regeneration therapy for an injured tissue. Specifically, the adhesion preventive kit includes: (A) a first membrane of at least two layers having a biodegradable base layer and an adhesion preventive layer provided respectively at outermost surfaces thereof and a second membrane of at least one layer having an adhesion preventive layer provided at an outermost surface thereof; or (B) an adhesion preventive membrane including a biodegradable base layer and an adhesion preventive layer, which membrane has an outermost surface constituted of the adhesion preventive layer and has a tissue sandwiching part.
Abstract:
Provided is an advanced heart failure treatment material, as a myocardial/cardiovascular regeneration device, that self-assembles, which can improve the universality and be used in an emergency by commercialization with no need of cell-culturing (cell-free) by controlling stem cells, and has a high therapeutic effect on the fundamental treatment of intractable cardiovascular diseases, in particular, advanced heart failure, in which not only the saving of lives but also improving the patient's quality of life (QOL) are urgent issues. The advanced heart failure treatment material includes a pharmaceutical agent, an agent holding for the pharmaceutical agent, and a myocardial support device.