Abstract:
The present invention has an object to provide a catalyst having excellent oxygen reduction reaction activity. The present invention relates to a catalyst comprising a catalyst support and a catalyst metal supported on the catalyst support, wherein a specific surface area of the catalyst per support weight is 715 m2/g support or more or a covering ratio of the catalyst metal with an electrolyte is less than 0.5, and an amount of an acidic group of the catalyst per support weight is 0.75 mmol/g support or less.
Abstract:
Provided is an electrode catalyst having enhanced catalytic activity (oxygen reduction reaction (ORR) specific activity). Disclosed is an electrode catalyst containing a catalyst metal particle(s) and a spacer(s) supported on a catalyst support, in which a ratio (dsp/dcat) of an average diameter of the spacer(s) (dsp) with respect to an average diameter of the catalyst metal particle(s) (dcat) is from 3.5 to 10.
Abstract:
The present invention relates to an electrode catalyst for fuel cell containing a catalyst carrier having carbon as a main component and a catalytic metal carried on the catalyst carrier, wherein the electrode catalyst for fuel cell has a ratio R′ (D′/G intensity ratio) of a peak intensity of D′ band (D′ intensity) measured in the vicinity of 1620 cm−1 to a peak intensity of G band (G intensity) measured in the vicinity of 1580 cm−1 by Raman spectroscopy of more than 0.6 and 0.8 or less, and satisfies at least one of the (a) to (d). According to the present invention, an electrode catalyst for fuel cell excellent in gas transportability is provided.
Abstract:
Provided are a carbon powder which can provide a catalyst exhibiting high performance and a catalyst. A carbon powder for fuel cell comprising carbon as a main component, which has a ratio (B/A) of an area B of peak 1 to an area A of peak 0 of more than 0 and 0.15 or less, wherein the area A represents an area of peak 0 at a position of 2θ=22.5° to 25° as observed by XRD analysis when the carbon powder for fuel cell is subjected to heat treatment at 1800° C. for 1 hour in an inert atmosphere, and the area B represents an area of peak 1 at a position of 2θ=26° as observed by XRD analysis when the carbon powder for fuel cell is subjected to heat treatment at 1800° C. for 1 hour in an inert atmosphere.
Abstract:
[Object] Provided is a catalyst having excellent gas transportability.[Solving Means] Disclosed is a catalyst comprising a catalyst support and a catalyst metal supported on the catalyst support, wherein the catalyst includes pores having a radius of less than 1 nm and pores having a radius of 1 nm or more, wherein a pore volume of the pores having a radius of less than 1 nm is 0.3 cc/g support or more or a mode radius of a pore distribution of the pores having a radius of less than 1 nm is 0.3 nm or more and less than 1 nm, and wherein the catalyst metal is supported inside the pores having a radius of 1 nm or more.
Abstract:
[Object] Provided is a catalyst having a high catalytic activity. [Solving Means] Disclosed is a catalyst comprising a catalyst support and a catalyst metal supported on the catalyst support, wherein the catalyst support includes pores having a radius of less than 1 nm and pores having a radius of 1 nm or more, a surface area formed by the pores having a radius of less than 1 nm is equal to or larger than a surface area formed by the pores having a radius of 1 nm or more, and an average particle diameter of the catalyst metal is 2.8 nm or more.
Abstract:
Provided is an electrode catalyst layer excellent in gas transportability by using an electrode catalyst layer for fuel cell comprising a catalyst containing a catalyst carrier and a catalytic metal carried on the catalyst carrier and an electrolyte, wherein the catalyst partially is coated with the electrolyte, and a specific surface area of the catalytic metal which gas can reach without passing through an electrolyte is 50% or more, with respect to the total specific surface area of the catalytic metal.
Abstract:
[Object] Provided is a catalyst having an excellent gas transportability.[Solving Means] Disclosed is a catalyst including a catalyst metal and a support, wherein the catalyst includes pores having a radius of 1 nm or more and less than 5 nm, a pore volume of the pores is 0.8 cc/g support or more, and the catalyst metal has a specific surface area of 30 m2/g support or less.
Abstract:
The object of the present invention is to provide a catalyst having an excellent catalyst activity.In the present invention, a catalyst is configured to include a catalyst support and a catalyst metal supported on the catalyst support, wherein a mode radius of pore distribution of pores of the catalyst is 1 nm or more and less than 5 nm, wherein the mode radius is equal to or less than an average particle radius of the catalyst metal, and wherein a pore volume of the pores is 0.4 cc/g support or more.
Abstract:
ObjectProvided is a catalyst having an excellent durability and being capable of lowering the cost of a fuel cell.Solving MeansDisclosed is a catalyst configured to include a support and alloy particles including platinum and a metal component other than platinum supported on the support, wherein the catalyst includes mesopores having a radius of 1 to 10 nm originated from the support, wherein a mode radius of the mesopores is in a range of 2.5 to 10 nm, and wherein the alloy particles have a catalyst function, and at least a portion of the alloy particles is supported inside the mesopores.