Abstract:
A novel nonaqueous electrolyte secondary battery having a high weight energy density far exceeding the weight energy density of a conventional secondary battery is provided. A nonaqueous electrolyte secondary battery including an electrolyte layer, a positive electrode and a negative electrode with the electrolyte layer interposed there between. The positive electrode includes (a) an electrically conductive polymer, and (b) a phosphorus-containing polymer. The negative electrode includes a base metal or a material capable of insertion/extraction of a base metal ion.
Abstract:
The present invention provides a spiral membrane element in which the effective membrane area of a composite semi-permeable membrane can be increased and any decrease in rejection rate is less likely to occur. The spiral membrane element includes: a laminate including a permeation-side flow path material, a supply-side flow path material, and a composite semi-permeable membrane having a separation function layer on a surface of a porous support; a perforated central tube around which the laminate is wound; and a sealing member for preventing mixing between the supply-side flow path and a permeation-side flow path, the spiral membrane element being characterized in that the thickness of the porous support of the composite semi-permeable membrane is 80 μm to 100 μm, the permeation-side flow path material is formed from a tricot knit fabric, and the width of a groove that continues in a straight line is 0.05 mm to 0.40 mm.
Abstract:
The purpose of the present invention is to provide: a thin composite semipermeable membrane having a practical salt rejection and permeation flux; a method for producing said membrane; and a spiral wound separation membrane element that has a practical salt rejection and provides excellent water treatment efficiency. The method for producing the composite semipermeable membrane includes a step in while, while feeding out a porous support having a porous polymer layer on one surface of a nonwoven fabric layer from a supply roll, an amine solution containing a multifunctional amine component is brought into contact with the porous support, and an organic solution containing a multifunctional acid halide component is brought into contact with the amine solution on the porous support to cause interfacial polymerization, thus forming a skin layer containing a polyamide resin on the surface of the porous support.
Abstract:
Provided are a composite semipermeable membrane that will maintain a sufficient level of rejection performance even when produced using different thicknesses of a porous support or different production conditions, a separation membrane element having such a composite semipermeable membrane, and a method for producing such a composite semipermeable membrane. The composite semipermeable membrane includes a porous support including a nonwoven fabric layer and a polymer porous layer on one surface of the nonwoven fabric layer; and a separation function layer on the surface of the porous support, wherein the porous support has a defect frequency F1 of 50 or less per 480 m2 with respect to defects having a width of 0.3 mm or more perpendicular to the direction of the polymer porous layer production line, when the relationship between the size and frequency of defects in the porous support is measured with transmitted light.
Abstract:
A nonaqueous electrolyte secondary battery is provided, which includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and negative electrode, and an electrolyte solution containing a supporting salt having ion conductivity, wherein the positive electrode comprises a composition containing components (a) and (b) below and satisfying a requirement (α) below, and wherein the negative electrode contains metal lithium and at least one selected from materials capable of lithium ion insertion/desorption:(a) an electrically conductive polymer; (b) a lithium salt formed by substituting a part of a polyanionic acid with lithium; and (α) a molar ratio of a lithium element content in the component (b) to a content of an element involved in a charge/discharge reaction in the component (a) is 0.1 to 1.0. Consequently, the nonaqueous electrolyte secondary battery has an excellent weight energy density and can reduce dependency on electrolyte solution amount.