Abstract:
A film manufacturing apparatus includes a lamination unit that laminates a first layer at one side in a thickness direction of a long-length substrate film to produce a one-sided laminated film, and that laminates a second layer at the other side in the thickness direction of the one-sided laminated film to produce a double-sided laminated film; a conveyance unit; a marking unit; a measurement unit; a detection unit, disposed at an upstream side in the conveyance direction of the measurement unit; and an arithmetic unit that obtains physical properties of the first layer and the second layer based on the physical property at a first position in the one-sided laminated film and the physical property at a second position in the double-sided laminated film. The arithmetic unit defines, with a mark as a reference, a position substantially the same as the first position to be the second position.
Abstract:
In a preliminary deposition for producing an optical film in which multilayered optical thin-film is formed on a film substrate, a plurality of sputtering chambers are simultaneously energized to deposit a stacked body of thin-films made of two or more different materials on the film substrate, and the thicknesses of the plurality of thin-films are calculated from the optical properties obtained by the optical measuring unit (80) equipped in a sputtering apparatus. Measurement of the thicknesses and adjusting the deposition conditions for thin-films are repeated until the optical properties obtained by the optical measurement unit or the thickness of the respective thin-films calculated from the optical properties falls within a prescribed range.
Abstract:
In a preliminary deposition for producing an optical film in which multilayered optical thin-film is formed on a film substrate, a plurality of sputtering chambers are simultaneously energized to deposit a stacked body of thin-films made of two or more different materials on the film substrate, and the thicknesses of the plurality of thin-films are calculated from the optical properties obtained by the optical measuring unit (80) equipped in a sputtering apparatus. Measurement of the thicknesses and adjusting the deposition conditions for thin-films are repeated until the optical properties obtained by the optical measurement unit or the thickness of the respective thin-films calculated from the optical properties falls within a prescribed range.
Abstract:
In a method for manufacturing a polarizing film comprising a polarizer, a first transparent protective film provided on one surface of the polarizer with an adhesive layer interposed therebetween, and a second transparent protective film provided on another surface of the polarizer with an adhesive layer interposed therebetween, the adhesive layers are obtained by first using active energy rays to carry out irradiation by way of the first transparent protective film and then using the active energy rays to carry out irradiation by way of the second transparent protective film to cure the active energy ray-curable adhesive composition.
Abstract:
In a method for manufacturing a polarizing film comprising a polarizer, a first transparent protective film provided on one surface of the polarizer with an adhesive layer interposed therebetween, and a second transparent protective film provided on another surface of the polarizer with an adhesive layer interposed therebetween, the adhesive layers are obtained by first using active energy rays to carry out irradiation by way of the first transparent protective film and then using the active energy rays to carry out irradiation by way of the second transparent protective film to cure the active energy ray-curable adhesive composition.
Abstract:
A method is disclosed to accurately estimate the thickness of each layer of a multilayer film. A first optical value difference between an actually measured optical value and a first theoretical optical value is obtained, and the first optical value difference is compared with a preset convergence condition. In a case where the first optical value difference does not satisfy the convergence condition, a second estimated thickness value of each layer expected to have an optical value difference smaller than the first optical value difference is set. A second optical value difference between an actually measured optical value and a second theoretical optical value is obtained, and the second optical value difference is compared with the convergence condition. Each step is repeated to obtain the estimated thickness value of each layer in which the difference between the actually measured optical value and the theoretical optical value satisfies the convergence condition.
Abstract:
A porous liquid crystal polymer sheet and a wiring circuit board have excellent handleability and excellent low repulsive properties. The porous liquid crystal polymer sheet 1 has a porosity P of 20% or more and 90% or less. The porous liquid crystal polymer sheet 1 has a thickness T of 1 μm or more and 240 μm or less.
Abstract:
A method is disclosed to accurately estimate the thickness of each layer of a multilayer film. A first optical value difference between an actually measured optical value and a first theoretical optical value is obtained, and the first optical value difference is compared with a preset convergence condition. In a case where the first optical value difference does not satisfy the convergence condition, a second estimated thickness value of each layer expected to have an optical value difference smaller than the first optical value difference is set. A second optical value difference between an actually measured optical value and a second theoretical optical value is obtained, and the second optical value difference is compared with the convergence condition. Each step is repeated to obtain the estimated thickness value of each layer in which the difference between the actually measured optical value and the theoretical optical value satisfies the convergence condition.
Abstract:
A film manufacturing apparatus includes a lamination unit that laminates a first layer at one side in a thickness direction of a long-length substrate film to produce a one-sided laminated film, and that laminates a second layer at the other side in the thickness direction of the one-sided laminated film to produce a double-sided laminated film; a conveyance unit; a marking unit; a measurement unit; a detection unit, disposed at an upstream side in the conveyance direction of the measurement unit; and an arithmetic unit that obtains physical properties of the first layer and the second layer based on the physical property at a first position in the one-sided laminated film and the physical property at a second position in the double-sided laminated film. The arithmetic unit defines, with a mark as a reference, a position substantially the same as the first position to be the second position.