摘要:
A reconfigurable MMC sub-module unit and a control unit thereof are provided, the reconfigurable MMC sub-module unit is mainly formed by an MMC sub-module unit and a reconfigurable mechanism, wherein the reconfigurable mechanism is formed by switches, and the conversion of MMC sub-module unit topology is achieved through switching on and off the switches in the reconfigurable mechanism. According to the reconfigurable MMC sub-module unit and the control unit thereof, the rapid change of a topology structure for a converter can be achieved, which is suitable for the demand of the line connection of the medium-voltage power distribution network and variable topologies, and meets requirements of dynamic simulation experiment for different converter topologies in the dynamic simulation experiment, thereby reducing construction costs and duration, improving experiment efficiency, and having high flexibility and strong versatility.
摘要:
Provided is a method for controlling a zero sequence voltage of a voltage source converter. When an alternating current system ground fault occurs, a zero sequence voltage at an alternating current (AC) side or a zero sequence voltage at a direct current (DC) side of a converter is detected. If the detected zero sequence voltage is greater than a set value V0ref, a DC side voltage of the converter can be increased to a set value Udc0, thereby generating an appropriate reference wave at the AC side of the converter to match an AC voltage, and accordingly controlling overmodulation of a reference wave at a faulty station to suppress fluctuation of a DC voltage.
摘要:
A method for charging a modular multilevel converter includes: firstly, electrifying DC side of a converter; after voltages of submodules are stabilized, deblocking the converter, turning on all the submodules, then reducing the number of turned on submodules in phase unit; when over-current occurs on a bridge arm, temporarily increasing the number of turned on submodules to suppress the over-current; after the voltages of the sub-modules are stabilized, continuously reducing the number of the turned on submodules until the number of the turned on submodules in the phase unit is finally equal to the number of working submodules of the bridge arm, so as to smoothly transit to a normal operation state. The DC side is charged, such that the voltages of the submodules reach a working voltage before the converter normally operates, and an impacting current is avoided in the charging process by using a proper control strategy.
摘要:
A series compensation device suitable to double-circuit lines is disclosed. The device includes one series transformer and one converter. One converter and dual-circuit transmission lines are respectively connected to three windings of one series transformer. In the solution provided in the present application, the device can be independently installed in a power transmission system to be used as a static synchronous series compensator, and can also be used as a component of a unified power flow controller, a convertible static compensator, an interline power flow controller and a unified power quality conditioner to be connected to a power transmission system device in series. The device can save the capacity of a converter, improve the application efficiency of the series compensation device, and reduce the cost and area occupation.
摘要:
A method for fault positioning and recovery of a voltage source converter includes following steps. Locking a converter station when it is detected that an alternating-current voltage contains a zero sequence voltage or a direct-current voltage contains an unbalanced voltage. Positioning a fault by continuing to detect the zero sequence voltage of an alternating-current side of the converter. Recovering operation of each station after the fault is positioned. The method for fault positioning and recovery is simple, practical, has high reliability, and can effectively detect the problems that each station contains a zero sequence voltage of an alternating-current side and cannot easily position a fault caused due to transmission of the zero sequence voltage of the alternating-current side to an opposite-side alternating-current system via a voltage source converter.
摘要:
A method for incorporating a non-operating station into an operating system in a multi-terminal flexible DC transmission system. The method includes selecting a STATCOM operation mode for the non-operating station; opening a bypass switch at an AC side and connecting a charging resistor to an AC line; closing the AC incoming-line breaker, and pre-charging a converter valve of the non-operating station through the resistor; closing the bypass switch after the pre-charging; selecting a constant-DC voltage control mode for the non-operating station to perform deblocking; controlling the difference between a non-operating station DC voltage value and an operating system direct voltage value to be within an allowable range; closing the pole-connection device at the DC side of a converter of the non-operating station; and switching the non-operating station from the STATCOM operation mode to a DC operation mode, and incorporating the non-operating station into the operating system.
摘要:
A fault switch configuration and clearing method in a flexible DC converter station, the flexible DC converter station is configured with a grid side switch and a valve side phase-split switch in the converter station. When a fault occurs, a faulty phase and a non-faulty phase are detected and identified by means of differential protection or low voltage overcurrent. An alternating current zero crossing condition is created by means of firstly turn off the non-faulty phase valve side phase-split switch and the grid side switch, thereby cutting off the faulty phase, disconnecting the connection between a power supply and a fault point, and achieving the clearing for faults. The described fault-clearing method is simple and practical, highly reliable, and connection between the fault point and the power supply is quickly and effectively cut; converter station equipment is effectively protected, and further expansion of the fault is avoided.
摘要:
Disclosed are a control method and system for a parallel converter system, including a common AC voltage controller and a separate current controller for each converter; the AC voltage controller generates an active current, a wattless current, and a system voltage phase reference value and, by means of communication, sends same to the current controller of each converter in island control mode to be a converter control signal; the active and wattless current outputted by each converter, along with the corresponding current reference value, accomplish the objective of the parallel converter system collectively controlling the amplitude and frequency of an AC bus voltage. The method and system are highly reliable and effectively ensure the synchronization of a plurality of converters.
摘要:
The present invention discloses a coordination control method of a multi-terminal VSC-HVDC transmission system. If a direct current voltage master control station shuts down, a direct current voltage control slave station takes over direct current voltage control, and remaining convertor stations keep original control modes. The takeover steps comprise that under the condition that inter-station communications are effective, the master control station sends a shutdown message to the slave station through the inter-station communications, and when the slave station monitors that the direct current voltage master control station shuts down, the slave station switches a current control mode into a direct current voltage control mode; and under the condition that inter-station communications fail or inter-station communications are absent, the slave station monitors changes of the direct current voltage of a system.
摘要:
Provided in the present invention is a direct current power grid voltage control method, dividing control of a direct current power grid voltage into three processes, namely natural voltage regulation, first voltage regulation and second voltage regulation; the converter stations in the direct current power grid are divided into three types, namely power regulation converter stations, auxiliary voltage regulation converter stations, and voltage regulation converter stations, on the basis of whether the converter station has a voltage regulation capacity, the power regulation converter stations operating in a fixed power control mode, the voltage regulation converter stations operating in a fixed voltage control mode or an auxiliary voltage control mode, and the auxiliary voltage control converter stations operating in the auxiliary voltage control mode; all the converter stations in the direct current power grid participate in natural voltage regulation, the auxiliary voltage regulation converter stations and the voltage regulation converter stations participate in first voltage regulation, and the voltage regulation converter stations participate in second voltage regulation; by means of a combination of the three voltage regulation processes, accurate control of the direct current voltage can be implemented in a steady state, and direct current voltage change can be suppressed in a transient state.