Abstract:
Disclosed is an integrated flying-spot X-ray apparatus comprising a ray generator configured to generate the X-ray, a revolving collimator device provided thereon with at least one aperture and arranged to be rotatable about the ray generator, a frameless torque motor configured to drive the revolving collimator device to rotate about the ray generator, and a cooling device configured to cool the ray generator, wherein the ray generator, the revolving collimator device, the frameless torque motor and the cooling device are mounted on an integrated mounting frame. Compared with the prior art, the integrated flying-spot X-ray apparatus according to the present disclosure has a simple and compact structure and is used as a kernel apparatus for fields of safety inspection and medical treatment.
Abstract:
The present disclosure provides an X-ray generator with adjustable collimation. The X-ray generator comprises: an assembly of X-ray source, which includes an X-ray tube having a cathode and an anode and a front collimator; a high voltage generator, which is disposed in an extended chamber of a housing for the X-ray tube and which is used for supplying a direct current high voltage between the cathode and the anode of the X-ray tube to excite X-ray beams; a collimation adjustment unit, which is rotatably disposed outside of the front collimator and which is used for adjusting fan-type X-ray beams into continuous pencil-type X-ray beams; and a cooling unit, which is independently mounted to the X-ray tube and which is used for cooling the anode of the X-ray tube; wherein, the assembly of X-ray source, the high voltage generator, the collimation adjustment unit and the cooling unit are integrated as a whole. The X-ray generator with adjustable collimation according to the disclosure has a compact construction, which is helpful in miniaturization, modularization and high efficiency of a security detection equipment.
Abstract:
Disclosed is an integrated flying-spot X-ray apparatus comprising a ray generator configured to generate the X-ray, a revolving collimator device provided thereon with at least one aperture and arranged to be rotatable about the ray generator, a frameless torque motor configured to drive the revolving collimator device to rotate about the ray generator, and a cooling device configured to cool the ray generator, wherein the ray generator, the revolving collimator device, the frameless torque motor and the cooling device are mounted on an integrated mounting frame. Compared with the prior art, the integrated flying-spot X-ray apparatus according to the present disclosure has a simple and compact structure and is used as a kernel apparatus for fields of safety inspection and medical treatment.
Abstract:
A human body back-scattering inspection system is disclosed. The system comprises a flying-spot forming unit configured to output beams of X-rays, a plurality of discrete detectors which are arranged vertically along a human body to be inspected, and a controlling unit coupled to the flying-spot forming unit and the plurality of detectors, and configured to generate a control signal to control the flying-spot forming unit and the plurality of detectors to perform a partition synchronous scan on the human body to be inspected vertically. The present disclosure utilizes the geometry property of the human body back-scattering inspection system, and proposes a multiple-point synchronous scan mechanism which largely accelerates the inspection of human body.
Abstract:
Embodiments include an X-ray generator including a radiation device installation housing and an X-ray generator. In various embodiments, the radiation device installation housing comprises a housing body, a flange fixedly provided on an inner wall of the housing body and shaped in circular and a compensation device fixedly or movably connected with the flange in a liquid tight manner; a liquid receiving cavity for receiving an insulating liquid formed between one side of two opposite sides of the compensation device and the inner wall of the housing body as well as the flange; a compensation device moving space formed between another side of the two opposite sides of the compensation device opposed to the inner wall of the housing body and an inner wall of the flange.
Abstract:
Embodiments of the present disclosure disclose a combined scanning X-ray generator, a composite inspection apparatus and an inspection method. The combined scanning X-ray generator includes: a housing; an anode arranged in the housing, the anode including a first end of the anode and a second end of the anode opposite the first end of the anode; a pencil beam radiation source arranged at the first end of the anode and configured to emit a pencil X-ray beam; and a fan beam radiation source arranged at the second end of the anode and configured to emit a fan X-ray beam; wherein the pencil beam radiation source and the fan beam radiation source are operated independently.
Abstract:
The present disclosure provides an X-ray tube device and a spring pin for an X-ray tube device. In an embodiment, the X-ray tube device includes: an outer cylinder assembly having an anode end and a cathode end, an anode end cap assembly provided at the anode end of the outer cylinder assembly and including an X-ray tube, a cathode end cap assembly provided at the cathode end of the outer cylinder assembly and including a high voltage receptacle for an external power supply, and a spring pin connection assembly provided in the outer cylinder assembly and connecting a filament lead of the X-ray tube to the high voltage receptacle.
Abstract:
The present invention provides a human body security inspection method and system. The method comprises: retrieving in real-time scanning row or column image data of a personal to be inspected; transmitting in real-time the image data to an algorithm processing module and processing these image data by the module; automatically recognizing a suspicious matter by a suspicious matter automatic target recognition technique, after retrieving an image data of an entire scanning image of the personal; any of the following three inspection modes is selected, so as to perform a further processing on basis of the recognition result of the suspicious matter, (1) in a manner of automatic target recognition technique, (2) in a combination manner of the automatic target recognition technique and a privacy protection image; and (3) a combination manner of the automatic target recognition technique, a privacy protection image and human intervention.
Abstract:
Disclosed are an installation case for a radiation device, an oil-cooling circulation system and an X-ray generator which belong to the technical field of X-ray generator. This disclosure aims to solve the technical problems existing in the conventional X-ray generator, that is, the conventional X-ray generator provides bad sealing, the weight of the case body of the conventional X-ray generator is heavy, and the leakage dose of the X-ray in the conventional X-ray generator is large. The installation case for a radiation device according to this disclosure comprising a case body and a collimator fixedly connected with the case body, the collimator being provided with a beam exit aperture and the case body being provided with a beam exit opening, the installation case for a radiation device further comprises a shielding device provided within the case body, the collimator and the shielding device are integrally formed, or the collimator and the shielding device are two separate parts and are fixedly connected with each other; each layer of the shielding device is provided with a ray exit aperture, and the ray exit aperture, the beam exit aperture and the beam exit opening are coaxial. The X-ray generator according to this disclosure comprises the oil-cooling circulation system according to this disclosure. The installation case for a radiation device according to the disclosure provides improved sealing and ray leakage-proof performance.
Abstract:
Disclosed are an installation case for a radiation device, an oil-cooling circulation system and an X-ray generator which belong to the technical field of X-ray generator. This disclosure aims to solve the technical problems existing in the conventional X-ray generator, that is, the conventional X-ray generator provides bad sealing, the weight of the case body of the conventional X-ray generator is heavy, and the leakage dose of the X-ray in the conventional X-ray generator is large. The installation case for a radiation device according to this disclosure comprising a case body and a collimator fixedly connected with the case body, the collimator being provided with a beam exit aperture and the case body being provided with a beam exit opening, the installation case for a radiation device further comprises a shielding device provided within the case body, the collimator and the shielding device are integrally formed, or the collimator and the shielding device are two separate parts and are fixedly connected with each other; each layer of the shielding device is provided with a ray exit aperture, and the ray exit aperture, the beam exit aperture and the beam exit opening are coaxial. The X-ray generator according to this disclosure comprises the oil-cooling circulation system according to this disclosure. The installation case for a radiation device according to the disclosure provides improved sealing and ray leakage-proof performance.