Abstract:
A system, method, and computer program product are provided for allocating processor resources to process compute workloads and graphics workloads substantially simultaneously. The method includes the steps of allocating a plurality of processing units to process tasks associated with a graphics pipeline, receiving a request to allocate at least one processing unit in the plurality of processing units to process tasks associated with a compute pipeline, and reallocating the at least one processing unit to process tasks associated with the compute pipeline.
Abstract:
A copy subsystem within a processor includes a set of logical copy engines and a set of physical copy engines. Each logical copy engine corresponds to a different command stream implemented by a device driver, and each logical copy engine is configured to receive copy commands via the corresponding command stream. When a logical copy engine receives a copy command, the logical copy engine distributes the command, or one or more subcommands derived from the command, to one or more of the physical copy engines. The physical copy engines can perform multiple copy operations in parallel with one another, thereby allowing the bandwidth of the communication link(s) to be saturated.
Abstract:
A system, method, and computer program product are provided for allocating processor resources to process compute workloads and graphics workloads substantially simultaneously. The method includes the steps of allocating a plurality of processing units to process tasks associated with a graphics pipeline, receiving a request to allocate at least one processing unit in the plurality of processing units to process tasks associated with a compute pipeline, and reallocating the at least one processing unit to process tasks associated with the compute pipeline.
Abstract:
Embodiments of the present invention set forth techniques for resolving page faults associated with a copy engine. A copy engine within a parallel processor receives a copy operation that includes a set of copy commands. The copy engine executes a first copy command included in the set of copy commands that results in a page fault. The copy engine stores the set of copy commands to the memory. At least one advantage of the disclosed techniques is that the copy engine can perform copy operations that involve source and destination memory pages that are not pinned, leading to reduced memory demand and greater flexibility.
Abstract:
A copy subsystem within a processor includes a set of logical copy engines and a set of physical copy engines. Each logical copy engine corresponds to a different command stream implemented by a device driver, and each logical copy engine is configured to receive copy commands via the corresponding command stream. When a logical copy engine receives a copy command, the logical copy engine distributes the command, or one or more subcommands derived from the command, to one or more of the physical copy engines. The physical copy engines can perform multiple copy operations in parallel with one another, thereby allowing the bandwidth of the communication link(s) to be saturated.
Abstract:
Embodiments of the present invention set forth techniques for resolving page faults associated with a copy engine. A copy engine within a parallel processor receives a copy operation that includes a set of copy commands. The copy engine executes a first copy command included in the set of copy commands that results in a page fault. The copy engine stores the set of copy commands to the memory. At least one advantage of the disclosed techniques is that the copy engine can perform copy operations that involve source and destination memory pages that are not pinned, leading to reduced memory demand and greater flexibility.
Abstract:
Techniques are disclosed for performing an auxiliary operation via a compute engine associated with a host computing device. The method includes determining that the auxiliary operation is directed to the compute engine, and determining that the auxiliary operation is associated with a first context comprising a first set of state parameters. The method further includes determining a first subset of state parameters related to the auxiliary operation based on the first set of state parameters. The method further includes transmitting the first subset of state parameters to the compute engine, and transmitting the auxiliary operation to the compute engine. One advantage of the disclosed technique is that surface area and power consumption are reduced within the processor by utilizing copy engines that have no context switching capability.
Abstract:
A copy subsystem within a processor includes a set of logical copy engines and a set of physical copy engines. Each logical copy engine corresponds to a different command stream implemented by a device driver, and each logical copy engine is configured to receive copy commands via the corresponding command stream. When a logical copy engine receives a copy command, the logical copy engine distributes the command, or one or more subcommands derived from the command, to one or more of the physical copy engines. The physical copy engines can perform multiple copy operations in parallel with one another, thereby allowing the bandwidth of the communication link(s) to be saturated.
Abstract:
A copy subsystem within a processor includes a set of logical copy engines and a set of physical copy engines. Each logical copy engine corresponds to a different command stream implemented by a device driver, and each logical copy engine is configured to receive copy commands via the corresponding command stream. When a logical copy engine receives a copy command, the logical copy engine distributes the command, or one or more subcommands derived from the command, to one or more of the physical copy engines. The physical copy engines can perform multiple copy operations in parallel with one another, thereby allowing the bandwidth of the communication link(s) to be saturated.
Abstract:
One embodiment of the present invention includes a hard-coded first device ID. The embodiment also includes a set of fuses that represents a second device ID. The hard-coded device ID and the set of fuses each designate a separate device ID for the device, and each device ID corresponds to a specific operating configuration of the device. The embodiment also includes selection logic to select between the hardcoded device ID and the set of fuses to set the device ID for the device. One advantage of the disclosed embodiments is providing flexibility for engineers who develop the devices while also reducing the likelihood that a third party can counterfeit the device.