Abstract:
A central processing unit (CPU) can specify an initial (e.g., baseline) frequency for a clock signal used by a device to perform a task. The CPU is then placed in a reduced power mode. The device performs the task after the CPU is placed in the reduced power mode until a triggering event causes the device to send an interrupt to the CPU. In response to the interrupt, the CPU awakens to dynamically adjust the clock frequency. If the clock frequency is reset to the baseline value, then the CPU is again placed in the reduced power mode.
Abstract:
A clock frequency controller for a processor and a method of operation thereof. The clock frequency controller may be embodied in a processor, including: (1) a processing core operable at a clock frequency to undertake a processing of a graphics application, and (2) a clock frequency controller coupled to the processing core and operable to adjust the clock frequency based on a current frame rate of the processing and a target frame rate for the processing.
Abstract:
Apparatuses, systems, and techniques to control utilization of a combination of processing cores. In at least one embodiment, utilization of a combination of processing cores is controlled based, at least in part, on historic thermal characteristics of the combination of the processing cores.
Abstract:
A clock frequency controller for a processor and a method of operation thereof. The clock frequency controller may be embodied in a processor, including: (1) a processing core operable at a clock frequency to undertake a processing of a graphics application, and (2) a clock frequency controller coupled to the processing core and operable to adjust the clock frequency based on a current frame rate of the processing and a target frame rate for the processing.