Abstract:
One embodiment of the present invention includes techniques for rasterizing primitives that include edges shared between paths. For each edge, a rasterizer unit selects and applies a sample rule from multiple sample rules. If the edge is shared, then the selected sample rule causes each group of coverage samples associated with a single color sample to be considered as either fully inside or fully outside the edge. Consequently, conflation artifacts caused when the number of coverage samples per pixel exceeds the number of color samples per pixel may be reduced. In prior-art techniques, reducing such conflation artifacts typically involves increasing the number of color samples per pixel to equal the number of coverage samples per pixel. Advantageously, the disclosed techniques enable rendering using algorithms that reduce the ratio of color to coverage samples, thereby decreasing memory consumption and memory bandwidth use, without causing conflation artifacts associated with shared edges.
Abstract:
One embodiment of the present invention includes techniques for rasterizing primitives that include edges shared between paths. For each edge, a rasterizer unit selects and applies a sample rule from multiple sample rules. If the edge is shared, then the selected sample rule causes each group of coverage samples associated with a single color sample to be considered as either fully inside or fully outside the edge. Consequently, conflation artifacts caused when the number of coverage samples per pixel exceeds the number of color samples per pixel may be reduced. In prior-art techniques, reducing such conflation artifacts typically involves increasing the number of color samples per pixel to equal the number of coverage samples per pixel. Advantageously, the disclosed techniques enable rendering using algorithms that reduce the ratio of color to coverage samples, thereby decreasing memory consumption and memory bandwidth use, without causing conflation artifacts associated with shared edges.
Abstract:
One embodiment of the present invention includes techniques for rasterizing primitives that include edges shared between paths. For each edge, a rasterizer unit selects and applies a sample rule from multiple sample rules. If the edge is shared, then the selected sample rule causes each group of coverage samples associated with a single color sample to be considered as either fully inside or fully outside the edge. Consequently, conflation artifacts caused when the number of coverage samples per pixel exceeds the number of color samples per pixel may be reduced. In prior-art techniques, reducing such conflation artifacts typically involves increasing the number of color samples per pixel to equal the number of coverage samples per pixel. Advantageously, the disclosed techniques enable rendering using algorithms that reduce the ratio of color to coverage samples, thereby decreasing memory consumption and memory bandwidth use, without causing conflation artifacts associated with shared edges.
Abstract:
A graphics processing pipeline within a parallel processing unit (PPU) is configured to perform path rendering by generating a collection of graphics primitives that represent each path to be rendered. The graphics processing pipeline determines the coverage of each primitive at a number of stencil sample locations within each different pixel. Then, the graphics processing pipeline reduces the number of stencil samples down to a smaller number of color samples, for each pixel. The graphics processing pipeline is configured to modulate a given color sample associated with a given pixel based on the color values of any graphics primitives that cover the stencil samples from which the color sample was reduced. The final color of the pixel is determined by downsampling the color samples associated with the pixel.
Abstract:
One embodiment of the present invention includes techniques for rasterizing primitives that include edges shared between paths. For each edge, a rasterizer unit selects and applies a sample rule from multiple sample rules. If the edge is shared, then the selected sample rule causes each group of coverage samples associated with a single color sample to be considered as either fully inside or fully outside the edge. Consequently, conflation artifacts caused when the number of coverage samples per pixel exceeds the number of color samples per pixel may be reduced. In prior-art techniques, reducing such conflation artifacts typically involves increasing the number of color samples per pixel to equal the number of coverage samples per pixel. Advantageously, the disclosed techniques enable rendering using algorithms that reduce the ratio of color to coverage samples, thereby decreasing memory consumption and memory bandwidth use, without causing conflation artifacts associated with shared edges.
Abstract:
One embodiment of the present invention includes techniques for rasterizing geometries. First, a processing unit defines a bounding primitive that covers the geometry and does not include any internal edges. If the bounding primitive intersects any enabled clip plane, then the processing unit generates fragments to fill a current viewport. Alternatively, the processing unit generates fragments to fill the bounding primitive. Because the rasterized region includes no internal edges, conflation artifacts caused when the number of coverage samples per pixel exceeds the number of color samples per pixel may be reduced. In prior-art techniques, reducing such conflation artifacts typically involves increasing the number of color samples per pixel to equal the number of coverage samples per pixel. Consequently, the disclosed techniques enable rendering using algorithms that reduce the ratio of color to coverage samples, thereby decreasing memory consumption and memory bandwidth use, without causing conflation artifacts associated with cover geometries.