Abstract:
Devices, systems, and techniques to incorporate lighting effects into computer-generated graphics. In at least one embodiment, a virtual scene comprising a plurality of lights is rendered by randomly sampling a set of lights from among the plurality of lights prior to rendering a frame of graphics. A subset of the set of lights is selected and used to render pixels within one or more portions of the frame.
Abstract:
A hardware-based traversal coprocessor provides acceleration of tree traversal operations searching for intersections between primitives represented in a tree data structure and a ray. The primitives may include opaque and alpha triangles used in generating a virtual scene. The hardware-based traversal coprocessor is configured to determine primitives intersected by the ray, and return intersection information to a streaming multiprocessor for further processing. The hardware-based traversal coprocessor is configured to provide a deterministic result of intersected triangles regardless of the order that the memory subsystem returns triangle range blocks for processing, while opportunistically eliminating alpha intersections that lie further along the length of the ray than closer opaque intersections.
Abstract:
A method, system and computer program product embodied on a computer-readable medium are provided for managing the execution of out-of-order instructions. The method includes the steps of receiving a plurality of instructions and identifying a subset of instructions in the plurality of instructions to be executed out-of-order.
Abstract:
A hardware-based traversal coprocessor provides acceleration of tree traversal operations searching for intersections between primitives represented in a tree data structure and a ray. The primitives may include opaque and alpha triangles used in generating a virtual scene. The hardware-based traversal coprocessor is configured to determine primitives intersected by the ray, and return intersection information to a streaming multiprocessor for further processing. The hardware-based traversal coprocessor is configured to omit reporting of one or more primitives the ray is determined to intersect. The omitted primitives include primitives which are provably capable of being omitted without a functional impact on visualizing the virtual scene.
Abstract:
Techniques are disclosed for improving the throughput of ray intersection or visibility queries performed by a ray tracing hardware accelerator. Throughput is improved, for example, by releasing allocated resources before ray visibility query results are reported by the hardware accelerator. The allocated resources are released when the ray visibility query results can be stored in a compressed format outside of the allocated resources. When reporting the ray visibility query results, the results are reconstructed based on the results stored in the compressed format. The compressed format storage can be used for ray visibility queries that return no intersections or terminate on any hit ray visibility query. One or more individual components of allocated resources can also be independently deallocated based on the type of data to be returned and/or results of the ray visibility query.
Abstract:
A hardware-based traversal coprocessor provides acceleration of tree traversal operations searching for intersections between primitives represented in a tree data structure and a ray. The primitives may include opaque and alpha triangles used in generating a virtual scene. The hardware-based traversal coprocessor is configured to determine primitives intersected by the ray, and return intersection information to a streaming multiprocessor for further processing. The hardware-based traversal coprocessor is configured to omit reporting of one or more primitives the ray is determined to intersect. The omitted primitives include primitives which are provably capable of being omitted without a functional impact on visualizing the virtual scene.
Abstract:
In a ray tracer, to prevent any long-running query from hanging the graphics processing unit, a traversal coprocessor provides a preemption mechanism that will allow rays to stop processing or time out early. The example non-limiting implementations described herein provide such a preemption mechanism, including a forward progress guarantee, and additional programmable timeout options that can be time or cycle based. Those programmable options provide a means for quality of service timing guarantees for applications such as virtual reality (VR) that have strict timing requirements.
Abstract:
A method, system and computer program product embodied on a computer-readable medium are provided for managing the execution of out-of-order instructions. The method includes the steps of receiving a plurality of instructions and identifying a subset of instructions in the plurality of instructions to be executed out-of-order.
Abstract:
Techniques are disclosed for improving the throughput of ray intersection or visibility queries performed by a ray tracing hardware accelerator. Throughput is improved, for example, by releasing allocated resources before ray visibility query results are reported by the hardware accelerator. The allocated resources are released when the ray visibility query results can be stored in a compressed format outside of the allocated resources. When reporting the ray visibility query results, the results are reconstructed based on the results stored in the compressed format. The compressed format storage can be used for ray visibility queries that return no intersections or terminate on any hit ray visibility query. One or more individual components of allocated resources can also be independently deallocated based on the type of data to be returned and/or results of the ray visibility query.
Abstract:
Devices, systems, and techniques to incorporate lighting effects into computer-generated graphics. In at least one embodiment, a virtual scene comprising a plurality of lights is rendered by randomly sampling a set of lights from among the plurality of lights prior to rendering a frame of graphics. A subset of the set of lights is selected and used to render pixels within one or more portions of the frame.