Abstract:
Aspects of the present disclosure are directed to radar apparatuses and methods involving the communication of data with radar signals. As may be implemented with one or more embodiments, a sequence of radar waveforms are transmitted as RF signals, the RF signals carrying communication data encoded onto a ramped radar carrier signal via phase-shift keying (PSK) modulation. Such modulation may utilize a modified, reduced-angle modulation with phase angles of less than π. Object-reflected versions of the RF signals are received and demodulated by deramping the received object-reflected versions of RF signals using a linearized version of the radar waveforms (e.g., without PSK modulation). This approach can mitigate compression peak loss.
Abstract:
A method of processing a signal by non-uniform quantization of log likelihood ratios is disclosed. A method comprising the steps of: receiving a plurality of bits; calculating a log likelihood ratio, known as a LLR, for each bit; providing a LLR value for each bit based on the calculated LLR; quantizing the LLR values into a plurality of quantization bins, each quantization bin having: a width representative of one or more LLR values; and an index value having a bit length; and associating each bit with the index value that corresponds to its LLR value, wherein the width of each quantization bin is non-uniform. This compresses the LLR values in a more efficient manner, requiring lower memory usage and/or lower bandwidth. A chip for a receiver and a communication system comprising one or more receivers are also disclosed.
Abstract:
Aspects of the present disclosure are directed to decoding signals susceptible to communication errors. As may be implemented in accordance with one or more embodiments, an input signal is decoded to produce a first decoded output, which is subsequently encoded, and error characteristics of the encoded first decoded output are assessed. The input signal is again decoded (e.g., with a delay), using the encoded first decoded output and the assessed error characteristics thereof to assess a reliability characteristic of bits in the input signal. A second decoded output is then provided with errors corrected therein based on the assessed reliability characteristic.
Abstract:
Certain aspects of the disclosure are directed to a method for communicating data from a transmitting circuit to a receiving circuit over a noisy channel. The method can be performed by logic circuitry, and can include encoding data, for transmission over the noisy channel. The data can be encoded, as a shaped-coded modulation signal by shaping the signal based on an amplitude selection algorithm that leads to a symmetrical input and by constructing a trellis having a bounded-energy sequence of amplitude values selected by computing and storing a plurality of channel-related energy constraints based on use of a nonlinear-estimation process, and therein providing an index for the bounded-energy sequence of amplitudes. The method can also include receiving over the noisy channel, the shaped-coded modulation signal, and decoding the data from the shaped-coded modulation signal by using the index to reconstruct the bounded-energy sequence of amplitudes.
Abstract:
Certain aspects of the disclosure are directed to a method for communicating data from a transmitting circuit to a receiving circuit over a noisy channel. The method can be performed by logic circuitry, and can include encoding data, for transmission over the noisy channel. The data can be encoded, as a shaped-coded modulation signal by shaping the signal based on an amplitude selection algorithm that leads to a symmetrical input and by constructing a trellis having a bounded-energy sequence of amplitude values selected by computing and storing a plurality of channel-related energy constraints based on use of a nonlinear-estimation process, and therein providing an index for the bounded-energy sequence of amplitudes. The method can also include receiving over the noisy channel, the shaped-coded modulation signal, and decoding the data from the shaped-coded modulation signal by using the index to reconstruct the bounded-energy sequence of amplitudes.
Abstract:
According to the present disclosure, there is provided methods of processing a signal using quantized symbols. More particularly, in one example, the method comprises the steps of processing a signal (206), said method comprising the steps of: receiving a signal (206) comprising a plurality of raw symbols, each raw symbol having a plurality of bits and being conveyed in a channel; estimating a channel state information value (206) of the channel used to convey each raw symbol to generate a corresponding plurality of channel state information values; quantizing the plurality of raw symbols based on their channel state information values to generate a sequence of quantized symbols (214); and quantizing the channel state information values to generate a sequence of quantized channel state values (216).
Abstract:
A receiver for a modulated signal of a communication system is disclosed. The receiver includes a demodulator to demodulate the received modulated symbols of a received signal into received soft-bits. The receiver also includes a hard-decision decoder that is configured to decode the received soft-bits into decoded bits. A feedback loop is included to provide feedback from the hard decision decoder to the demodulator. The feedback loop is configured to re-encode the decoded bits from the hard-decision decoder into re-encoded bits. The demodulator is further configured to iteratively demodulate the received modulated signal using an output of the feedback loop.
Abstract:
Embodiments of systems and methods for performing channel estimation on Orthogonal frequency-division multiplexing (OFDM) signals are described. In one embodiment, a method for performing channel estimation on an OFDM signal involves performing blind channel phase estimation on an OFDM signal to obtain channel phase information and performing blind channel magnitude estimation on the OFDM signal to obtain channel magnitude information. Each of performing blind channel phase estimation on the OFDM signal and performing blind channel magnitude estimation on the OFDM signal involves detecting and suppressing a signal path of the OFDM signal. Other embodiments are also described.
Abstract:
Aspects of the present disclosure are directed to radar apparatuses and methods involving the communication of data with radar signals. As may be implemented with one or more embodiments, a sequence of radar waveforms are transmitted as RF signals, the RF signals carrying communication data encoded onto a ramped radar carrier signal via phase-shift keying (PSK) modulation. Such modulation may utilize a modified, reduced-angle modulation with phase angles of less than π. Object-reflected versions of the RF signals are received and demodulated by deramping the received object-reflected versions of RF signals using a linearized version of the radar waveforms (e.g., without PSK modulation). This approach can mitigate compression peak loss.
Abstract:
An input selector for selecting an input of a convolution encoder of a transmitter is disclosed. The input selector comprises a shaper block and an input-select block. The shaper block is configured to receive an input comprising a first number of input bits, the shaper block configured to generate a shaped bit stream corresponding to the first number of input bits. The input-select block is configured to generate an encoder input bit stream for the encoder based on the shaped bit stream, wherein the input-select block generates the encoder input bit stream such that, when input into the encoder, a first bit of the encoder input bit stream sets a state of the encoder in order that a subsequent second bit of the encoder input bit stream causes the encoder to generate a bit of the shaped bit stream at a pre-determined position in an encoder output bit stream.