Abstract:
A catheter (4) may be introduced into the body of a patient to provide electromagnetic power, such as RF power, directly to a stent (2) to cause heating of surrounding tissue for ablation. The stent may have a conducting portion (14) and insulated portions (13). Struts (15) on the catheter may be deployed by a balloon (103) to contact the stent. The stent may have radial or sector segments (16) which may be individually powered for treating asymmetric tumours.
Abstract:
Devices suitable for insertion into a hollow anatomical structure within a patient for the purpose of ablating tissue within or surrounding the hollow structure so as to induce occlusion of the hollow structure are provided. The devices are in the form of guidewires with functional tips, that comprise at least one heating module, at their distal ends. The devices of the invention are suitable for occluding hollow anatomical structures selected from vasculature or from non-vascular ducts and tubes, via percutaneous, laparoscopic or endoscopic routes of access. Methods of using the devices in the treatment of patients are also described.
Abstract:
A device is provided that is suitable for percutaneous insertion into a hollow vessel, such as a blood vessel, within the body of a patient for purpose of causing endoluminal closure of the vessel at a specified therapeutic site in the body of a patient. The device suitably is in the form of a catheter that is slidably mounted on a guidewire. The catheter may comprise one or more heating modules, as well as one or more extendable structures located on the device and optionally on the associated guidewire, that lead thermal ablation of the vessel walls and subsequent collapse of the vessel. The catheter can function alone or in cooperation with an associated guidewire to induce sealing of the vessel. Methods of using the catheter to treat lesions such as tumours or hemorrhages are also described.
Abstract:
Devices suitable for insertion into a hollow anatomical structure within a patient for the purpose of ablating tissue within or surrounding the hollow structure so as to induce occlusion of the hollow structure are provided. The devices are in the form of guidewires with functional tips, that comprise at least one heating module, at their distal ends. The devices of the invention are suitable for occluding hollow anatomical structures selected from vasculature or from non-vascular ducts and tubes, via percutaneous, laparoscopic or endoscopic routes of access. Methods of using the devices in the treatment of patients are also described.
Abstract:
The present invention relates to an isolated stem cell population wherein said stem cells are CD34+, capable of self regeneration, capable of differentiation into ectodermal, mesodermal and endodermal cells and capable of adhering to tissue-culture grade plastic as well as to methods of isolation of said cells, methods of culturing and differentiation thereof, the progeny of such methods of differentiation as well as uses, including therapeutic uses of the stem cells and their differentiated progeny.
Abstract:
A device for generating localized heating in a selected body tissue includes an applicator having a source of microwave radiation and an array of retractable needles arranged so as to extend from one face of the applicator and, in operation, to confine the irradiated microwave energy field emanating from the applicator. The device has applications for controlling excessive bleeding from severed tissue during surgical procedures.
Abstract:
Devices suitable for insertion into a hollow anatomical structure within a patient for the purpose of ablating tissue within or surrounding the hollow structure so as to induce occlusion of the hollow structure are provided. The devices are in the form of guidewires with functional tips, that comprise at least one heating module, at their distal ends. The devices of the invention are suitable for occluding hollow anatomical structures selected from vasculature or from non-vascular ducts and tubes, via percutaneous, laparoscopic or endoscopic routes of access. Methods of using the devices in the treatment of patients are also described.
Abstract:
A removable stent (10) has guide member pairs (16) and loops (20), the guide member pairs being used to align arms of a framework (28) which may expand or collapse the stent. The stent can be retained inside an outer sheath (30) of a catheter (32) with a collapsible filter net (34). Magnetic stents and stents with springs (170) and hinges (156) are also provided.
Abstract:
A method for using thiazine dyes, especially methylene blue or methylene blue derivatives, in an immediate or controlled release formulation, alone or in combination with low levels of light or other drugs, to selectively inactivate or inhibit hepatitis infection, has been developed. Clinical trial results demonstrate efficacy in a human clinical trial for treatment of hepatitis C by oral administration of methylene blue immediate release formulation, in a dosage of 65 mg twice daily, over a period of at least 100 days. A method for using thiazine dyes, especially methylene blue or methylene blue derivatives, in an immediate or controlled release formulation, along or in combination with low levels of light or other drugs, to prevent or decrease reactivation of viruses, is also described. The preferred class of patient is infected with, or has been exposed to, viruses such as Herpes simplex virus type 1 & 2, Varicella zoster virus, Epstein-Barr virus, Cytomegalovirus, and Herpes virus type 6 & 7, Adenovirus, and Human polyoma viruses, e.g. JC virus and BK virus. In one embodiment the thiazine dye is administered to a patient experiencing symptoms or disease caused by reactivation of a virus. In a preferred embodiment the thiazine dye is administered to a patient at risk for or experiencing symptoms or disease caused by reactivation of a virus, prior to or during immunosuppression or chemotherapy.
Abstract:
A device for restricting the loss of blood during a surgical procedure is disclosed. The device generates localized heating in an organ or volume of tissue and includes an applicator that is positioned against an organ or tissue to be treated, an array of retractable needles that deliver irradiating energy in the vicinity of a selected incision point; a switching mechanism in communication with the needles for energizing and causing movement of the needles and a power unit for supplying irradiating power to the needles when extended into the organ or tissue.