摘要:
A method for color transfer includes retrieving a concept color palette from computer memory corresponding to a concept selected by a user. The concept color palette includes a first set of colors, which may be statistically representative of colors of a set of predefined color palettes which have been associated with the concept. The method further includes computing an image color palette for an input image. The image color palette includes a second set of colors that are representative of pixels of the input image. Colors of the image color palette are mapped to colors of the concept color palette to identify, for colors of the image color palette, a corresponding color in the concept color palette. A transformation is computed based on the mapping. For pixels of the input image, modified color values are computed, based on the computed transformation, to generate a modified image.
摘要:
A system and method for color transfer are provided. The method includes retrieving a concept color palette from computer memory corresponding to a concept selected by a user. The concept color palette includes a first set of colors, which may be statistically representative of colors of a set of predefined color palettes which have been associated with the concept. The method further includes computing an image color palette for an input image. The image color palette includes a second set of colors that are representative of pixels of the input image. Colors of the image color palette are mapped to colors of the concept color palette to identify, for colors of the image color palette, a corresponding color in the concept color palette. A transformation is computed based on the mapping. For pixels of the input image, modified color values are computed, based on the computed transformation, to generate a modified image.
摘要:
A system and method are provided for modeling a chromatic object, such as an image. For a set of colors of a chromatic object that are expressed as color values in a perceptual color space, the method includes optimizing a convex objective function which is a log likelihood function of a combination of weighted kernels centered on each color in the set over each of the other colors in the set. A number Nc of weighted kernels in the optimized function which each have a weight which is at least greater than 0 is identified. The chromatic object is modeled with a mixture model in which the complexity of the model is based on the identified number Nc.
摘要:
A system and method are provided for modeling a chromatic object, such as an image. For a set of colors of a chromatic object that are expressed as color values in a perceptual color space, the method includes optimizing a convex objective function which is a log likelihood function of a combination of weighted kernels centered on each color in the set over each of the other colors in the set. A number Nc of weighted kernels in the optimized function which each have a weight which is at least greater than 0 is identified. The chromatic object is modeled with a mixture model in which the complexity of the model is based on the identified number Nc.
摘要:
A system and method for ranking images are provided. The method includes receiving a query comprising a semantic part and an abstract part, retrieving a set of images responsive to the semantic part of the query, and computing first scores for the retrieved images in the set of retrieved images. The first score of an image can be based on a relevance of that image to the semantic part of the query (and not to the abstract part of the query). The method further includes identifying a chromatic concept model from a set of chromatic concept models. This identification can be based on the abstract part of the query (and not on the semantic part of the query). The chromatic concept model includes an optionally-weighted set of colors expressed in a perceptually uniform color space. For retrieved images in the set of retrieved images, the method includes computing a chromatic image model based on colors of the image, the chromatic image model comprising a weighted set of colors expressed in the perceptually uniform color space and computing a comparison measure between the chromatic image model and the chromatic concept model. The retrieved images are scored with respective second scores that are based on the computed comparison measures. The retrieved images are ranked based on a combined score for a respective retrieved image which is a function of the first and second scores.
摘要:
A system for detecting a vehicle occupancy violation includes an image capture module that acquires an image including a vehicle cabin from a camera positioned to view oncoming traffic. The system includes a violation determination device, which includes a feature extraction module that processes the image pixels for determining an image descriptor. The process is selected from a group consisting of a Successive Mean Quantization Transform; a Scale-Invariant Feature Transform; a Histogram of Gradients; a Bag-of-Visual-Words Representation; a Fisher Vector Representation; and, a combination of the above. The system further includes a classifier that determines a distance that the vehicle image descriptor/representation is positioned in the projected feature space relative to a hyper-plane. The classifier determines whether the distance meets a threshold and classifies the image when the threshold is met. A processor implements the modules. A graphic user interface outputs the classification.
摘要:
A system for detecting a vehicle occupancy violation includes an image capture module that acquires an image including a vehicle cabin from a camera positioned to view oncoming traffic. The system includes a violation determination device, which includes a feature extraction module that processes the image pixels for determining an image descriptor. The process is selected from a group consisting of a Successive Mean Quantization Transform; a Scale-Invariant Feature Transform; a Histogram of Gradients; a Bag-of-Visual-Words Representation; a Fisher Vector Representation; and, a combination of the above. The system further includes a classifier that determines a distance that the vehicle image descriptor/representation is positioned in the projected feature space relative to a hyper-plane. The classifier determines whether the distance meets a threshold and classifies the image when the threshold is met. A processor implements the modules. A graphic user interface outputs the classification.
摘要:
A system and method for assisting a user in navigation of an image dataset are disclosed. The method includes receiving a user's text query, retrieving images responsive to the query from an image dataset, providing for receiving the user's selection of a first feature selected from a set of available first features via a graphical user interface, providing for receiving the user's selection of a second feature selected from a set of available second features different from the first features via the graphical user interface, and displaying at least some of the retrieved images on the graphical user interface. The displayed images are arranged, e.g., grouped, according to levels and/or combinations of levels of the user-selected first and second features.
摘要:
What is disclosed is a system and method for estimating color for pixels in an infrared image. In one embodiment, an infrared image is received which has been captured using a N-band infrared imaging system comprising a multi-spectral camera or a hyperspectral camera. The IR image is composed of an array of pixels with N intensity values having been collected for each pixel in the image. Then, for each pixel of interest, a search metric is used to search a database of vector samples to identify a visible-IR set which is closest to the intensity values of the IR band vector collected for the pixel. A visible vector representation is then estimated for the pixel based upon the visible portion corresponding to the closest visible-IR set. Thereafter, color coordinates for this pixel are computed from the visible vector. The method repeats for all pixels of interest in the IR image.