摘要:
A light amount controlling apparatus includes a light source for producing light and a light source driver for driving the light source. A zoom lens unit includes a zoom lens for varying an angle of projection of the light, and a zoom lens position detector detects a position of the zoom lens. A memory stores control data corresponding to the position of the zoom lens and a memory controller reads the control data from the memory according to a detected value of the zoom lens position of the zoom lens position detector. A controller controls the light source driver to vary an amount of light projected from the light source in accordance with the control data output from the memory controller.
摘要:
A gas sensor includes a sensor element having a specific function, and a housing containing the sensor element therein and including a thread section, and a sealing surface which forms a sealing section together with an installation section at a position deeper than the thread section in a direction in which the sensor element is inserted. When the housing is screwed into the installation section, the release torque of the housing at 850° C. (1123 K) is 9 N·m or more, and an estimated value of a gap formed between the sealing surface and the installation section at 850° C. (1123 K) that is calculated according to a specific equation is 31 μm or less.
摘要:
An ammonia concentration detection sensor 100, has: a sensor element 110 capable of detecting the ammonia concentration of a measurement target gas; and a protective cover 120 that regulates the inflow of the measurement target gas into the sensor element 110 and protects the sensor element 110. The protective cover 120 is coated with a coating layer.
摘要:
A technology which makes it possible to prolong the service life of a porous electrode constituted by a sintered body of an electrode metal material and a ceramic material, and the service life of an NOx sensor element having the porous electrode. The porous electrode is produced so as to have a total pore volute of at least 0.013 ml/g and a peak pore diameter of at least 0.31 μm as measured by mercury penetration method, by a process wherein a composition which includes the electrode material and the ceramic material and to which a vanishable solid material that vanishes by firing is formed into a thin film, which is then fired to form the sintered body which consists of the electrode material and the ceramic material and which has a multiplicity of pores formed as a result of vanishing of the vanishable solid material.
摘要:
A gas sensor includes an internal space, diffusion control part, pumping cell, and measuring cell. The diffusion control part communicates with the internal space and has a slit-like shape with a smaller thickness than that of the internal space. The pumping cell pumps out oxygen from the internal space when voltage is applied between a first electrode formed on a surface of the internal space and a second electrode formed outside the internal space. The measuring cell measures a current flowing between a third and fourth electrodes when a voltage is applied between the third and fourth electrodes. The third electrode is formed in the diffusion control part, and can reduce an oxide gas component in a predetermined gas component to which a predetermined diffusion resistance has been applied by the diffusion control part. The fourth electrode is formed in a part different from the diffusion control part.
摘要:
A gas sensor having a sensor element that includes an inner space for introducing a measurement gas therein from an external space and a pump cell which has a first electrode formed on a surface of the inner space and a second electrode formed in a space different from the inner space and is provided to pump oxygen out of the inner space by applying a predetermined voltage between the first electrode and the second electrode. Assuming that the length of the inner space in a short-side direction of the sensor element as viewed from the front end portion side thereof is x1 and the length of the inner space in a longitudinal direction of the sensor element as viewed from the front end portion side thereof is x2, the following inequality is satisfied: 0.05≦x1/x2≦0.25.
摘要:
A flow path from outer gas introduction apertures 144a to inner gas introduction apertures 134a has a narrower-width flow passage formed by an inner wall member 150. This structure effectively lowers the probability that a liquid, such as water, entering from the outer gas introduction apertures 144a passes through a gas inflow chamber 122 and reaches a sensor element 110, compared with a structure without the inner wall member 150. The inner wall member 150 is formed as a solid member that is capable of storing the surrounding heat. Even if there is a certain event that has the potential of causing a temperature decrease of the sensor element 110, for example, an abrupt change in flow rate of an object gas, the heat stored in the inner wall member 150 effectively prevents a temperature decrease of the sensor element 110. This structure prevents the occurrence of cracking in the sensor element 110, compared with a conventional sensor structure having a double-layered protective cover.
摘要:
An ammonia concentration detection sensor 100, has: a sensor element 110 capable of detecting the ammonia concentration of a measurement target gas; and a protective cover 120 that regulates the inflow of the measurement target gas into the sensor element 110 and protects the sensor element 110. The protective cover 120 is coated with a coating layer.
摘要:
The present invention provides a gas sensor which allows separation to hardly occur. A gas sensor 1 includes a gas detecting section 2 and a heater section 8 secured in the gas sensor, the heater section 8 including a heating element 3 and a support 9 which supports at least the heating element 3. An opening section 4 is provided to reduce pressure generated between the heating element 3 and the support 9.
摘要:
A detecting electrode comprises a first cermet electrode layer formed directly on a solid electrolyte layer and a second cermet electrode layer formed on the first cermet electrode layer. The ratio between Pt and Rh in the first cermet electrode layer ranges from 100:0 to 25:75 by weight. The ratio between Pt and Rh in the second cermet electrode layer ranges from 25:75 to 0:100 by weight.