摘要:
A magnetic strong base anion exchange resin with high mechanical strength and a preparation method thereof, belonging to the field of resin materials. The preparation method comprises steps of: adding a conventional strong base anion exchange resin to a mixture of trivalent iron salt and divalent iron salt, and then mixing the resin adsorbed with the iron salt with aqueous ammonia so that Fe3O4 nanoparticles are contained in the resin structure. Then, the resin containing Fe3O4 nanoparticles is added to alcoholic solution dissolved with silane coupling agent to form a dense SiO2 coating on the surface of the resin, so as to obtain magnetic strong base anion exchange resin with high mechanical strength.
摘要:
The invention discloses a fixed bed counter-current regeneration device for ion exchange resin and the method of use, relates to the field of ion exchange resin regeneration. The device comprises a cyclone separator, a regeneration reactor, a fully mixed resin reactor, a desorption solution storage tank, and a regenerant storage tank, wherein the cyclone separator is placed on top of the regeneration reactor, the upper part of the cyclone separator is connected to the fully mixed resin reactor. A resin inlet is provided at the bottom of the cyclone separator, a resin bed and a resin filter are arranged inside the regeneration reactor, a resin outlet and a regenerant inlet are arranged at the bottom of the regeneration reactor, the resin outlet is connected to the fully mixed resin reactor, the regenerant inlet is connected to the desorption solution storage tank and the regenerant storage tank, respectively, one side of the regeneration reactor is further provided with a regenerant outlet, and the regenerant outlet is connected to the desorption solution storage tank. The invention effectively improves resin regeneration efficiency via separator and counter-current, reduces the desorption solution yield, prevents mechanical wear and tear of the resin, and can be used as part of large-scale ion exchange resin applications.
摘要:
Implementations herein relate to a method for extraction of phthalates using hydrophilic magnetic resins with high specific surface areas. The implementations relate to a technical field of preparation of resins for fast enrichment and separation of trace organics in water. By adding magnetic particles, precursor resins may be prepared using divinylbenzene, vinyl benzoate and glycidyl methacrylate copolymerization ester. After the cross-linking reaction, surface areas of the resins are increased and hydrolysis of the ester group in alkaline solution may be implemented to obtain high specific surface magnetic resins rich in hydroxyl groups. The resins have higher adsorptive capacity and selectivity to adsorb phthalates in water samples. Rapid extraction may be implemented using magnetic solid phase extraction rod to achieve enrichment and separation of phthalates in a large amount of water samples.
摘要:
The invention discloses a fixed bed counter-current regeneration device for ion exchange resin and the method of use, relates to the field of ion exchange resin regeneration. The device comprises a cyclone separator, a regeneration reactor, a fully mixed resin reactor, a desorption solution storage tank, and a regenerant storage tank, wherein the cyclone separator is placed on top of the regeneration reactor, the upper part of the cyclone separator is connected to the fully mixed resin reactor. A resin inlet is provided at the bottom of the cyclone separator, a resin bed and a resin filter are arranged inside the regeneration reactor, a resin outlet and a regenerant inlet are arranged at the bottom of the regeneration reactor, the resin outlet is connected to the fully mixed resin reactor, the regenerant inlet is connected to the desorption solution storage tank and the regenerant storage tank, respectively, one side of the regeneration reactor is further provided with a regenerant outlet, and the regenerant outlet is connected to the desorption solution storage tank. The invention effectively improves resin regeneration efficiency via separator and counter-current, reduces the desorption solution yield, prevents mechanical wear and tear of the resin, and can be used as part of large-scale ion exchange resin applications.
摘要:
Implementations herein relate to a method for extraction of phthalates using hydrophilic magnetic resins with high specific surface areas. The implementations relate to a technical field of preparation of resins for fast enrichment and separation of trace organics in water. By adding magnetic particles, precursor resins may be prepared using divinylbenzene, vinyl benzoate and glycidyl methacrylate copolymerization ester. After the cross-linking reaction, surface areas of the resins are increased and hydrolysis of the ester group in alkaline solution may be implemented to obtain high specific surface magnetic resins rich in hydroxyl groups. The resins have higher adsorptive capacity and selectivity to adsorb phthalates in water samples. Rapid extraction may be implemented using magnetic solid phase extraction rod to achieve enrichment and separation of phthalates in a large amount of water samples.
摘要:
In view of the current pollution to sewage by nitrate nitrogen, the present invention discloses a method for promoting denitrification to remove nitrate nitrogen in water by magnetic resins. In the method disclosed by the present invention, magnetic anion exchange resins are in contact with and mixed with sewage, and nitrate nitrogen in the sewage is removed quickly and efficiently by both the ion exchange between the magnetic anion exchange resins and the nitrate nitrogen in the sewage and the denitrification enhanced by the magnetic material. Meanwhile, the regeneration and recycle of the magnetic anion exchange resins are realized by the denitrification of microorganisms.
摘要:
A method for green synthesis of uniform- and large-particle-size polystyrene particles, comprising steps of: prepolymerizing styrene at 70□ to 75□ for 1 h to 6 h in advance while stirring, adding divinylbenzene dissolved with initiators to the styrene, and stirring for 10 min to 30 min to obtain oil phase; heating lactic acid or an aqueous solution of lactic acid to 70□ to 80□, adding the oil phase to dispersed phase by a constant-pressure device, maintaining the temperature for 2 h, heating to 80±5□ and then maintaining the temperature for 1 h, and heating to 85±5□ and then maintaining the temperature for 3 h to 6 h, to obtain polystyrene particles with a uniform particle size ranging from 0.7 mm to 2.0 mm.
摘要:
A water reclamation method on the basis of integrated use of magnetic resin adsorption and electrosorption is provided. It belongs to the water reclamation field, including the following steps: pump the biotreated effluent into a reactor that is filled with magnetic resin particles so that the chromaticity, organic pollutants, total nitrogen, total phosphorus contained in the wastewater can be effectively reduced; channel the fully reacted mixture into a precipitation tank for separation; part of the separated magnetic resin is pumped back into the reactor while the rest of the separated magnetic resin flows into a regeneration tank; the wastewater treated by magnetic resin adsorption then flows into an electrosorption unit for a desalting process; the remaining organic pollutants and inorganic pollutants are further removed.
摘要:
Implementations herein relate to methods for reducing a desorption solution for regeneration of ion exchange resins in the field of regeneration of resins. The implementations solve problems related to low utilization rates of regeneration agents and high volumes of desorption solutions during the desorption process. The implementations include regenerating the ion exchange resins, and the regeneration solution becomes the desorption solution. After coagulating sedimentation of the desorption solution and slurry separation, a large amount of organic contents are removed from coagulation serum and a large amount of regenerate agents are left. The implementations further include adding the regeneration agent to the coagulation serum to form new or refreshed regeneration solution to regenerate the ion exchange resins. Accordingly, the coagulation serum may be generated from the desorption solution. These operations may be repeated multiple batches for resin regeneration.
摘要:
Implementations herein relate to methods for reducing a desorption solution for regeneration of ion exchange resins in the field of regeneration of resins. The implementations solve problems related to low utilization rates of regeneration agents and high volumes of desorption solutions during the desorption process. The implementations include regenerating the ion exchange resins, and the regeneration solution becomes the desorption solution. After coagulating sedimentation of the desorption solution and slurry separation, a large amount of organic contents are removed from coagulation serum and a large amount of regenerate agents are left. The implementations further include adding the regeneration agent to the coagulation serum to form new or refreshed regeneration solution to regenerate the ion exchange resins. Accordingly, the coagulation serum may be generated from the desorption solution. These operations may be repeated multiple batches for resin regeneration.