摘要:
A coating for carbide substrates employs a nanostructured coating in conjunction with a non-nanostructured coating. The nanostructured coating is produced by the addition of a refining agent flow, particular hydrogen chloride gas, during deposition, and may be produced as multiple individual nanostructured layers varying functional materials in a series. The combination of a nanostructured coating and non-nanostructured coating is believed to produce a cutting tool insert that exhibits longer life. Pre-treating the substrate with a mixture of compressed air and abrasive medium prior to coating the substrate and post-treating the coated substrate with a mixture of water and abrasive medium after the coating process is believed to further enhance the wear resistance and usage life of the cutting tool.
摘要:
An adherent coating for carbide and ceramic substrates employs a thin layer between the substrate and a subsequent layer or layers. The thin layer may be employed without thermal cracking due to heat during use, such as for the insert of a cutting tool, because the upper layer or layers provide a gradual transition of material properties to a harder, less thermally conductive material on the outermost layer. A particular arrangement of layers on the carbide or ceramic substrate may be, from innermost to outermost layer, hafnium nitride, titanium carbide, aluminum oxide, and titanium nitride.
摘要:
A method for forming a stand-alone wafer or a coating on a substrate uses a composite of cubic boron nitride (cBN) particles and other materials, such as nitrides, carbides, carbonitrides, borides, oxides, and metallic phase materials. The wafer or coating may be formed of a thickness up to about 1000 microns for improved wear life. The density of material within the wafer or coating may be varied according to desired parameters, and a gradient of particle sizes for the cBN may be presented across the thickness of the material.
摘要:
A method of depositing particles onto a substrate utilizes a liquid dispersant into which the particles are introduced prior to spraying upon the surface. The ratio of the particles to the dispersant, as well as the volume of the dispersant, may be used to control the density of the particles that result on the substrate after spraying.