摘要:
A carbonaceous support member for a high-temperature heat-treated metal molding object, particularly a setter for heat-treatment in powder metallurgy, is formed as a carbon-ceramic composite shaped product having a bulk density of 1.2-1.6 g/ml and including a carbonaceous matrix and 3-20 wt. % of ceramic particles which are uniformly dispersed in the carbonaceous matrix and partly exposed to the surface of the composite. The support member can effectively prevent carburization of a metal molding object supported thereby during the heat-treatment without causing a problem of peeling of coating layer as encountered in a ceramic-coated support member. The support member may be prepared by compression molding of a powdery mixture of a fine carbon precursor and ceramic particles, followed by heating at 1000-2000° C. to carbonize the fine carbon precursor.
摘要:
A carbonaceous support member for a high-temperature heat-treated metal molding object, particularly a setter for heat-treatment in powder metallurgy, is formed as a carbon-ceramic composite shaped product having a bulk density of 1.2-1.6 g/ml and including a carbonaceous matrix and 3-20 wt. % of ceramic particles which are uniformly dispersed in the carbonaceous matrix and partly exposed to the surface of the composite. The support member can effectively prevent carburization of a metal molding object supported thereby during the heat-treatment without causing a problem of peeling of coating layer as encountered in a ceramic-coated support member. The support member may be prepared by compression molding of a powdery mixture of a fine carbon precursor and ceramic particles, followed by heating at 1000-2000° C. to carbonize the fine carbon precursor.
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, comprises: a carbon material having a sphericity of at least 0.8, and exhibiting an average (002) interlayer spacing d002 of 0.365-0.400 nm, a crystallite size in a c-axis direction Lc(002) of 1.0-3.0 nm, as measured by X-ray diffractometry, a hydrogen-to-carbon atomic ratio (H/C) of at most 0.1 as measured by elementary analysis, and an average particle size Dv50 of 1-20 μm. The negative electrode material is spherical and exhibits excellent performances including high output performance and durability.
摘要:
A process for manufacturing a spherical activated carbon, characterized by comprising the steps of: (1) forming a spherical substance of a heat-fusible resin, (2) oxidizing the spherical substance of a heat-fusible resin to form a heat-infusible spherical substance, and (3) activating the heat-infusible spherical substance to form the spherical activated carbon is disclosed. According to the process for the manufacture, a spherical activated carbon having desirable properties, such as an average particle diameter, a particle size distribution, a pore volume, or a specific surface area, can be easily prepared.
摘要:
A process for producing a spherical carbon material, comprising: subjecting a spherical vinyl resin to an oxidation treatment in an oxidizing gas atmosphere to obtain a spherical carbon precursor, and carbonizing the spherical carbon precursor at 1000-2000° C. in a non-oxidizing gas atmosphere. The thus-obtained spherical carbon material exhibits excellent performances, including high output performance and durability, when used, e.g., as a negative electrode material for non-aqueous electrolyte secondary batteries.
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, comprises: a carbon material having a sphericity of at least 0.8, and exhibiting an average (002) interlayer spacing d002 of 0.365-0.400 nm, a crystallite size in a c-axis direction Lc(002) of 1.0-3.0 nm, as measured by X-ray diffractometry, a hydrogen-to-carbon atomic ratio (H/C) of at most 0.1 as measured by elementary analysis, and an average particle size Dv50 of 1-20 μm. The negative electrode material is spherical and exhibits excellent performances including high output performance and durability.
摘要:
A process for producing a spherical carbon material, comprising: subjecting a spherical vinyl resin to an oxidation treatment in an oxidizing gas atmosphere to obtain a spherical carbon precursor, and carbonizing the spherical carbon precursor at 1000-2000° C. in a non-oxidizing gas atmosphere. The thus-obtained spherical carbon material exhibits excellent performances, including high output performance and durability, when used, e.g., as a negative electrode material for non-aqueous electrolyte secondary batteries.
摘要:
An adsorbent for an oral administration, comprising a surface-modified spherical activated carbon wherein an average diameter is 0.01 to 1 mm, a specific surface area determined by a BET method is 700 m2/g or more, a volume of pores having a pore diameter of 7.5 to 15000 nm is from 0.25 mL/g to 1.0 mL/g, a total amount of acidic groups is 0.30 to 1.20 meq/g, and a total amount of basic groups is 0.20 to 0.7 meq/g, is disclosed.
摘要:
An adsorbent for an oral administration, comprising a spherical activated carbon wherein an average particle diameter is 50 to 200 μm, a specific surface area determined by a BET method is 700 m2/g or more, and a bulk density is less than 0.54 g/mL is disclosed. The adsorbent for an oral administration has a high adsorbability, and is capable of adsorbing a large amount of toxins during a retention period in an intestine, and of remarkably increasing an adsorption amount of compounds having a large molecular weight.
摘要:
A non-aqueous solvent-type secondary battery having a large charge-discharge capacity and exhibiting a high utilization rate of an active substance, such as lithium, and an excellent charge-discharge cycle characteristic, can be constituted by using a carbonaceous electrode material having a specific microtexture. The carbonaceous electrode material is characterized by having an average (002)-plane spacing d.sub.002 of 0.336-0.375 nm and a crystallite size in c-axis direction Lc.sub.(002) of at most 50 nm, respectively, as measured by X-ray diffraction method, and an optically anisotropic texture showing a fine mosaic texture when observed through a polarizing microscope. The carbonaceous material may suitably be produced through a process including the steps of: crosslinking a tar or pitch of a petroleum or coal origin, and carbonizing the crosslinked tar or pitch at a temperature of at least 800.degree. C. under a reduced pressure or in an inert gas atmosphere.