Abstract:
The invention enables the transmission of continuous complex numbers using a symbol based transmission scheme such as OFDM. Accordingly, complex numbers are mapped to the constellation map, enabling a fine granularity of constellation points. This scheme may be used, for example, in the transmission of video where the coefficients representing the higher frequency of each of the video components, as well as the quantization error values of the DC and near DC components, or some, possibly non-linear transformation thereof, are sent as pairs of real and imaginary portions of a complex number that comprises a symbol.
Abstract:
The vertical blanking period is an idle period in video transmission that was originally intended for allowing the trace back of an electron beam to its point of origin. When sending the video signal over a wireless channel, the wireless channel may remain free of transmission of data during this period. However, in wireless transmission of a video signal in general, and in the transmission of an essentially uncompressed video signal in particular, there is a need to use all the bandwidth available, especially when transmitting a high-definition video signal. Therefore, a method is taught for using the vertical blanking period of a video signal for modem maintenance.
Abstract:
An apparatus and method for wireless transmission of uncompressed HDTV video overcomes the challenges of sending vast amounts of information over a wireless link. This is achieved by direct mapping of transformation coefficients of the video components to communication symbols, such as OFDM symbols. A main portion of the important transform coefficients, for example the MSBs of the coefficients representing lower frequencies of each of the video components, and in particular the quantized values of the lower frequencies components, are sent in a coarse representation using, for example, QPSK or QAM. The coefficients representing higher frequencies of the video components, and the quantization error values of the lower frequencies components, or some, non-linear transformation thereof, are sent as pairs of real and imaginary portions of a complex number that comprises a point in a fine constellation. The invention further provides a delay-less and buffer-less implementation of transmitter and receiver pairs.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of wireless video communication. Some embodiments include a wireless video receiver to receive a wireless video transmission including data representing pixels of a video frame and a synchronization signal indicative of a beginning of the video frame, the wireless receiver including a clock generator to generate a pixel clock signal synchronized to the synchronization signal, wherein a clock rate of the pixel clock signal corresponds to a pixel rate of the pixels. Other embodiments are described and claimed.
Abstract:
An apparatus for receiving essentially uncompressed HDTV video must generate an accurate pixel-rate clock to enable the reconstruction of a video frame. The clock pixel-rate generated must match a received video pixel-rate. In such system, signals for generation of horizontal and vertical synchronization are not transmitted over the wireless link to conserve the use of bandwidth. In the invention, a start of frame (SOF) indication is extracted by a symbol detection and synchronization (SDS) module and is used to generate the pixel-rate clock.
Abstract:
An apparatus for receiving essentially uncompressed HDTV video must generate an accurate pixel-rate clock to enable the reconstruction of a video frame. The clock pixel-rate generated must match a received video pixel-rate. In such system, signals for generation of horizontal and vertical synchronization are not transmitted over the wireless link to conserve the use of bandwidth. In the invention, a start of frame (SOF) indication is extracted by a symbol detection and synchronization (SDS) module and is used to generate the pixel-rate clock.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of wireless video communication. Some embodiments include a wireless video receiver to receive a wireless video transmission including data representing pixels of a video frame and a synchronization signal indicative of a beginning of the video frame, the wireless receiver including a clock generator to generate a pixel clock signal synchronized to the synchronization signal, wherein a clock rate of the pixel clock signal corresponds to a pixel rate of the pixels. Other embodiments are described and claimed.
Abstract:
An apparatus and method for wireless transmission of uncompressed HDTV video overcomes the challenges of sending vast amounts of information over a wireless link. This is achieved by direct mapping of transformation coefficients of the video components to communication symbols, such as OFDM symbols. A main portion of the important transform coefficients, for example the MSBs of the coefficients representing lower frequencies of each of the video components, and in particular the quantized values of the lower frequencies components, are sent in a coarse representation using, for example, QPSK or QAM. The coefficients representing higher frequencies of the video components, and the quantization error values of the lower frequencies components, or some, non-linear transformation thereof, are sent as pairs of real and imaginary portions of a complex number that comprises a point in a fine constellation. The invention further provides a delay-less and buffer-less implementation of transmitter and receiver pairs.
Abstract:
The vertical blanking period is an idle period in video transmission that was originally intended for allowing the trace back of an electron beam to its point of origin. When sending the video signal over a wireless channel, the wireless channel may remain free of transmission of data during this period. However, in wireless transmission of a video signal in general, and in the transmission of an essentially uncompressed video signal in particular, there is a need to use all the bandwidth available, especially when transmitting a high-definition video signal. Therefore, a method is taught for using the vertical blanking period of a video signal for modem maintenance.
Abstract:
The invention enables the transmission of continuous complex numbers using a symbol based transmission scheme such as OFDM. Accordingly, complex numbers are mapped to the constellation map, enabling a fine granularity of constellation points. This scheme may be used, for example, in the transmission of video where the coefficients representing the higher frequency of each of the video components, as well as the quantization error values of the DC and near DC components, or some, possibly non-linear transformation thereof, are sent as pairs of real and imaginary portions of a complex number that comprises a symbol.