Abstract:
A portable optical tomography design for performing elastographic deformation mapping of tissues comprises a coherence light source providing one light beam; a scanning microscope comprising a waveguide having two terminals, a coupler disposed on one terminal, an actuating member connected to the waveguide or the coupler, a first optical reflection member, a beam splitter, and a Fourier-domain spectrometer. The waveguide is actuated by the actuator to traverse a horizontal and vertical motion to prescribe a two-dimensional plane for scanning the tissue sample. Optical fiber is used to connect above elements therebetween. The Fourier-domain spectrometer is coupled with the beam splitter and comprises a second reflection member and an interferogram capturing member. An interferogram produced from the Fourier-domain spectrometer is carried over to a digital signal processor and subsequently an optical coherence tomography image device to generate a three-dimensional image for the scanned tissue.
Abstract:
The present invention relates to a palpation diagnostic device, which comprises an optical pressure sensor embedded in a holder; wherein the optical pressure sensor is an optical fiber sensor, or a micro-fabricated waveguide sensor to be disposed on a finger or a palm; and the optical pressure sensor is configured to receive an optical signal whose intensity is attenuated when a force is applied on the optical pressure sensors. Therefore, the palpation diagnostic device of the present invention can provide high sensing sensitivity by attenuating the intensity of the optical signal in the optical pressure sensors which a force is applied on, so it can provide precise and immediate information based on quantitative feedback for the users.
Abstract:
A grasping-response evaluation system includes: a base mechanism; a positioning module mounted in the base mechanism; a controlling device operable to control the positioning module to switch between the grasping and releasing states; a bob to be engaged with the positioning module in the grasping state; and a traction rope connected between the bob and the base mechanism. When the positioning module switches from the grasping state to the releasing state, the bob becomes disengaged from the positioning module, falls downwardly relative to the base mechanism, and simultaneously pulls down the traction rope. When a grasping-data collecting device removably disposed on the base mechanism and connected to the traction rope is lifted by a user's hand, it pulls up the traction rope, and measures a grasping force of the user's hand.
Abstract:
A forearm synergy training device includes a support swingable on a base and having an arcuate sliding rail portion, a sliding unit movable on the arcuate sliding rail portion, and a synergistic assembly connected to the base, the support and the sliding unit for driving the sliding unit to slide along the arcuate sliding rail portion when the support is swung. A wearable unit is removably disposed on the support and the sliding unit, and is sleeved on a hand and a forearm of a user. When the user's elbow bends, the support is swung by the forearm through the wearable unit, so that the hand and the forearm are driven by the sliding unit to rotate along the arcuate sliding rail portion.