Abstract:
An organic sulfur material comprising carbon, hydrogen, oxygen, and sulfur as constituent elements, and having peaks in the vicinity of 482 cm−1, 846 cm−1, 1066 cm−1, 1279 cm−1, and 1442 cm−1 in a Raman spectrum detected by Raman spectroscopy, the peak in the vicinity of 1442 cm−1 being most intense, has a high capacity and high heat resistance, although a liquid organic starting material is used.
Abstract:
A lithium silicate-based compound according to the present invention is expressed by a general formula, Li(2−a+b)AaMn(1−x−y)CoxMySiO(4+α)Clβ (In the formula: “A” is at least one element selected from the group consisting of Na, K, Rb and Cs; “M” is at least one member selected from the group consisting of Mg, Ca, Al, Ni, Fe, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo and W; and the respective subscripts appear to be as follows: 0≦“a”
Abstract:
To provide a lithium ion secondary battery capable of suppressing thermal run-away when internal short circuiting occurs. The lithium ion secondary battery includes: a positive electrode including a current collector, a positive electrode active material layer that is formed on the current collector and that contains a lithium-containing complex oxide having a layered rock salt structure and being represented by general formula: LiaNibCocMndDeOf (0.2≦a≦1; b+c+d+e=1; 0≦e
Abstract:
Provided are a positive electrode active material for a sodium ion secondary battery, and a positive electrode and a sodium ion secondary battery using the material. The positive electrode active material for a sodium ion secondary battery comprises a lithium sodium-based compound containing lithium (Li), sodium (Na), iron (Fe), and oxygen (O).
Abstract:
An organic sulfur material comprising carbon, hydrogen, oxygen, and sulfur as constituent elements, and having peaks in the vicinity of 482 cm−1, 846 cm−1, 1066 cm−1, 1279 cm−1, and 1442 cm−1 in a Raman spectrum detected by Raman spectroscopy, the peak in the vicinity of 1442 cm−1 being most intense, has a high capacity and high heat resistance, although a liquid organic starting material is used.
Abstract:
An object of the present invention is to provide a positive-electrode active material comprising a carbon-sulfur structure which has Raman shift peaks at around 500 cm−1, at around 1,250 cm−1 and at around 1,450 cm−1 in a Raman spectrum, and by using the positive-electrode active material, it is possible to greatly improve cycling characteristics of a lithium-ion secondary battery.
Abstract:
The present invention provides an organic sulfur material comprising carbon, hydrogen, and sulfur as constituent elements, and having peaks in the vicinity of 480 cm−1, 1250 cm−1, 1440 cm−1, and 1900 cm−1 in a Raman spectrum detected by Raman spectroscopy. The peak in the vicinity of 1440 cm−1 is the most intense peak. This organic sulfur material, which is produced by using a liquid organic starting material, achieves high capacity. This organic sulfur material preferably does not have peaks in the vicinity of 846 cm−1 or 1066 cm−1.
Abstract:
A lithium-ion secondary battery of the present invention comprises a positive electrode including a positive electrode active material composite formed by compositing a lithium silicate-based material and a carbon material, a negative electrode including a negative electrode active material containing a silicon, and an electrolyte. The lithium-ion secondary battery satisfies 0.8
Abstract:
The present invention provides an organic sulfur material comprising carbon, hydrogen, and sulfur as constituent elements, and having peaks in the vicinity of 480 cm−1, 1250 cm−1, 1440 cm−1, and 1900 cm−1 in a Raman spectrum detected by Raman spectroscopy. The peak in the vicinity of 1440 cm−1 is the most intense peak. This organic sulfur material, which is produced by using a liquid organic starting material, achieves high capacity. This organic sulfur material preferably does not have peaks in the vicinity of 846 cm−1 or 1066 cm−1.
Abstract:
A lithium silicate-based compound according to the present invention is expressed by a general formula, Li(2−a+b)AaMn(1−x−y)CoxMySiO(4+α)Clβ (In the formula: “A” is at least one element selected from the group consisting of Na, K, Rb and Cs; “M” is at least one member selected from the group consisting of Mg, Ca, Al, Ni, Fe, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo and W; and the respective subscripts appear to be as follows: 0≦“a”