摘要:
The present invention relates to methods of treating cancer using a combination of a compound which is an antineoplastic agent and a compound which is a inhibitor of prenyl-protein transferase, which methods comprise administering to said mammal, either sequentially in any order or simultaneously, amounts of at least two therapeutic agents selected from a group consisting of a compound which is an antineoplastic agent and a compound which is a inhibitor of prenyl-protein transferase. The invention also relates to methods of preparing such compositions.
摘要:
The present invention relates to methods of treating cancer using a combination of a compound which is an antineoplastic agent and a compound which is a inhibitor of prenyl-protein transferase, which methods comprise administering to said mammal, either sequentially in any order or simultaneously, amounts of at lest two therapeutic agents selected from a group consisting of a compound which is an antineoplastic agent and a compound which is an inhibitor or prenyl-protein transferase. The invention also relates to methods of preparing such compositions.
摘要:
Bifunctional molecules comprising two hsp-binding moieties which bind to hsp90 in the pocket to which ansamycin antibiotics bind connected via a linker are effective for inducing the degradation and/or inhibition of HER-family tyrosine kinases. For example, a compound of two geldanamycin moities joined by a four-carbon linker provides selective degradation of HER-family tyrosine kinases, without substantially affecting other kinases. These compounds can be used for treatment of HER-positive cancers with reduced toxicity, since these compounds potently kill cancer cells but affect fewer proteins than geldanamycin.
摘要:
This invention provides a process for the preparation of a racemic mixture of dysidiolide a method for inhibiting growth of cancerous cells comprising contracting an amount of the racemic mixture of dysidiolide effective to inhibit the growth of said cells. Further provided is a method for treating cancer in a subject which comprises administering to the subject a therapeutically effective amount of the racemic mixture of dysidiolide.
摘要:
Bifunctional molecules comprising two hsp-binding moieties which bind to hsp90 in the pocket to which ansamycin antibiotics bind connected via a linker are effective for inducing the degradation and/or inhibition of HER-family tyrosine kinases. For example, a compound of two geldanamycin moities joined by a four-carbon linker provides selective degradation of HER-family tyrosine kinases, without substantially affecting other kinases. These compounds can be used for treatment of HER-positive cancers with reduced toxicity, since these compounds potently kill cancer cells but affect fewer proteins than geldanamycin.
摘要:
Compounds having an ansamycin anitibiotic, or other moiety which binds to hsp90, coupled to a targeting moiety which binds specifically to a protein, receptor or marker can provide effective targeted delivery of the ansamycin antibiotic leading to the degradation of proteins and death of the targeted cells. These compositions may have different specificity than the ansamycin alone, allowing for a more specific targeting of the therapy, and can be effective in instances where the ansamycin alone has no effect. Thus, these compounds provide an entirely new class of targeted chemotherapy agents with application, depending on the nature of the targeting moiety, to treatment of a variety of different forms of cancer. Such agents can further be used to promote selective degradation of proteins associated with the pathogenesis of others diseases, including antigens associated with autoimmune disorders and pathogenic proteins associated with Alzheimer's disease. Exemplary targeting moieties which may be employed in compounds of the invention include testosterone, estradiol, tamoxifen and wortmannin.
摘要:
Structural differences in binding pockets of members of the HSP90 family can be exploited to achieve differential degradation of kinases and other signaling proteins through the use of designed small molecules which interact with the N-terminal binding pocket with an affinity which is greater than ADP and different from the ansamycin antibiotics for at least one species of the HSP90 family. Moreover, these small molecules can be designed to be soluble in aqueous media, thus providing a further advantage over the use of ansamycin antibiotics. Pharmaceutical compositions can be formulated containing a pharmaceutically acceptable carrier and a molecule that includes a binding moiety which binds to the N-terminal pocket of at least one member of the HSP90 family of proteins. Such binding moieties were found to have antiproliferative activity against tumor cells which are dependent on proteins requiring chaperones of the HSP90 family for their function. Different chemical species have different activity, however, allowing the selection of, for example Her2 degradation without degradation of Raf kinase. Thus, the binding moieties possess an inherent targeting capacity. In addition, the small molecules can be linked to targeting moieties to provide targeting of the activity to specific classes of cells. Thus, the invention further provides a method for treatment of diseases, including cancers, by administration of these compositions. Dimeric forms of the binding moieties may also be employed.
摘要:
Novel methods of treating proliferative disorders characterized by elevated Her-2, and the patient is then administered an effective amount of an HSP90 inhibitor.
摘要:
The present invention provides identification of a thirty-five gene set that predicts the anticancer activity of inhibitors of the RAF/MEK/MAPK pathway, methods of qualifying cancer status in a subject, methods of identifying an anti-tumor response in a subject, methods of monitoring the efficacy of a therapeutic drug in a subject, and methods of identifying an agent useful in the treatment of a cancer based on expression of the thirty-five gene set.
摘要:
The present invention relates to compounds having the structure (and pharmaceutically acceptable derivatives thereof) wherein Ro-R4, Z, X, A-B, D-E, G-J, and K-L are as defined herein, the synthesis thereof and the use of these compounds as therapeutic agents.