Abstract:
An apparatus for separating solids from a drilling fluid that includes a basket having two opposed spaced-apart side walls having first ends and second ends, the first ends spaced apart by an end wall connected to each of the side walls, the basket further including a bottom wall through which a fluid outlet passage is defined, a plurality of screening surfaces having a front edge and a back edge and positioned within the basket between the side walls with each screening surface spaced apart vertically from adjacent screening surfaces and the back edge spaced apart from the end wall of the basket, wherein the back edge of each screening surface is lower than the front edge of the corresponding screening surface, a plurality of weirs, each weir retained along the back edge of a corresponding screening surface and spaced apart from the end wall to define a fluid passage between each weir and the end wall, wherein each weir has a top edge extending to a weir height above the back edge of the corresponding screening surface and the top edge is lower than the front edge of the corresponding screening surface, at least one flow director catching unseparated drilling fluid in the fluid passage and directing the unseparated drilling fluid onto a lower screen, and wherein fluid in the fluid passage between the lowermost screen and the end wall is directed to a spillover fluid outlet is disclosed.
Abstract:
An apparatus for separating solids from a drilling fluid that includes a basket having two opposed spaced-apart side walls having first ends and second ends, the first ends spaced apart by an end wall connected to each of the side walls, the basket further including a bottom wall through which a fluid outlet passage is defined, a plurality of screening surfaces having a front edge and a back edge and positioned within the basket between the side walls with each screening surface spaced apart vertically from adjacent screening surfaces and the back edge spaced apart from the end wall of the basket, wherein the back edge of each screening surface is lower than the front edge of the corresponding screening surface, a plurality of weirs, each weir retained along the back edge of a corresponding screening surface and spaced apart from the end wall to define a fluid passage between each weir and the end wall, wherein each weir has a top edge extending to a weir height above the back edge of the corresponding screening surface and the top edge is lower than the front edge of the corresponding screening surface, at least one flow director catching unseparated drilling fluid in the fluid passage and directing the unseparated drilling fluid onto a lower screen, and wherein fluid in the fluid passage between the lowermost screen and the end wall is directed to a spillover fluid outlet is disclosed.
Abstract:
A method of treating a hydrocarbon fluid that includes contacting the hydrocarbon fluid with an effective amount of ozone. A method for separating contaminants from a contaminated material includes supplying the contaminated material to a processing chamber, moving the contaminated material through the processing chamber, heating the contaminated material by externally heating the processing chamber so as to volatilize the contaminants in the contaminated material, removing vapor resulting from the heating, wherein the vapor comprises the volatilized contaminants, collecting, condensing, and recovering the volatilized contaminants, and contacting the volatilized contaminants with an effective amount of ozone.
Abstract:
Oil-based drilling fluid is prepared for further processing to recover the drilling fluid by pumping the drilling fluid through a flow meter. Surfactant may be added to the drilling fluid by using a dose pump and a flow meter. The drilling fluid and surfactant are then blended by passing them through a static mixer. A flocculating polymer is transferred via dose pumps to another static mixer where it is blended with the surfactant and drilling fluid mixture. To ensure adequate mixing and reaction, additional mixers are included through which the mixture passes. A centrifuge is used to separate solid particles from the fluid.
Abstract:
An additive that increases the density of fluids used in a wellbore during the construction or repair of oil, gas, injection, water, or geothermal wells comprises In one illustrative embodiment the additive comprises a weighting agent, and more preferably an ultra-fine weighting agent. Another embodiment includes a wellbore fluid containing an ultra-fine weighting agent that has an increased density with improved suspension stability without a significant viscosity increase. The wellbore fluid as described herein has rheological properties comparable to a conventional wellbore fluid. An illustrative embodiment of the claimed subject matter is further directed to a method for making the ultra-fine weighting agent and a method for using such ultra-fine weighting agent in a wellbore fluid. In one preferred embodiment the additive has a particle diameter between 4 μm to 15 μm. In another preferred embodiment, the additive has a D50 of approximately 3 μm (1 μm to 6 μm). In another preferred embodiment the additive has a D90 of approximately 6 μm (4 μm to 8 μm). The additive may be used in any wellbore fluid such as drilling, cementing, completion, packing, work-over (repairing), stimulation, well killing, and spacer fluid, as well as in a dense media separating fluid or in a ship's or other vehicle's ballast fluid.
Abstract:
An additive that increases the density of fluids containing a sized barite weighting agent. The wellbore fluid has rheological properties comparable to a conventional wellbore fluids but does not exhibit problems with sag and resulting variations in density. An illustrative embodiment is directed to a method for making the sized barite weighting agent and a method for using such sized barite weighting agent in a wellbore fluid. In one preferred embodiment the sized barite weighting agent has a particle diameter between 4 μm to 15 μm In another preferred embodiment, the additive has a D50 (by weight) of approximately 1 μm to 6 μm. In another preferred embodiment the additive has a D90 (by weight) of approximately 4 μm to 8 μm. The additive may be used in any wellbore fluid such as drilling, cementing, completion, packing, work-over (repairing), stimulation, well killing, and spacer fluid.
Abstract:
A method of treating a hydrocarbon fluid that includes contacting the hydrocarbon fluid with an effective amount of ozone. A method for separating contaminants from a contaminated material includes supplying the contaminated material to a processing chamber, moving the contaminated material through the processing chamber, heating the contaminated material by externally heating the processing chamber so as to volatilize the contaminants in the contaminated material, removing vapor resulting from the heating, wherein the vapor comprises the volatilized contaminants, collecting, condensing, and recovering the volatilized contaminants, and contacting the volatilized contaminants with an effective amount of ozone.
Abstract:
A method for transferring a sized clay material for use in drilling fluids that includes providing the sized clay material to a pneumatic transfer vessel; supplying an air flow to the sized clay material in the pneumatic transfer vessel; and transferring the sized clay material from the pneumatic transfer vessel to a storage vessel is disclosed.
Abstract:
A method for removing low gravity solids from an oil-based drilling fluid includes directing the drilling fluid into a first inlet of a first line in fluid communication with a centrifuge, injecting steam into the drilling fluid through a second inlet in the first line, wherein the second inlet is upstream from the centrifuge, directing the commingled drilling fluid and steam into the centrifuge, rotating the centrifuge at a rotational speed sufficient to separate solids from liquids, collecting solids from a solids discharge, and collecting effluent from an effluent outlet, wherein the effluent has low gravity solids in an amount less than 1.5%.
Abstract:
Oil-based drilling fluid is prepared for further processing to recover the drilling fluid by pumping the drilling fluid through a flow meter. Surfactant may be added to the drilling fluid by using a dose pump and a flow meter. The drilling fluid and surfactant are then blended by passing them through a static mixer. A flocculating polymer is transferred via dose pumps to another static mixer where it is blended with the surfactant and drilling fluid mixture. To ensure adequate mixing and reaction, additional mixers are included through which the mixture passes. A centrifuge is used to separate solid particles from the fluid.