摘要:
An automated drawing tool and a method for drawing a sensor layout. A sensor is drawn by selecting a sensor family, each sensor of the sensor family having at least one drive element to impose a magnetic field in a test material when driven by an electric signal, and at least one sense element for sensing a response of the test material. A set of layout rules are associated with the sensor family and are used in determining a sensor-layout. The automated drawing tool processes input information and the layout rules, for the sensor family, to automatically draw the sensor.
摘要:
Methods are described for assessing material condition. These methods include the use of multiple source fields for interrogating and loading of a multicomponent test material. Source fields include electric, magnetic, thermal, and acoustic fields. The loading field preferentially changes the material properties of a component of the test material, which allows the properties of the component materials to be separated. Methods are also described for monitoring changes in material state using separate drive and sense electrodes with some of the electrodes positioned on a hidden or even embedded material surface. Statistical characterization of the material condition is performed with sensor arrays that provide multiple responses for the material condition during loading. The responses can be combined into a statistical population that permits tracking with respect to loading history. Methods are also described for measuring the stress in the material by independently estimating effective electrical properties, such as magnetic permeability or electrical conductivity, using layered models or predetermined spatial distributions with depth that are then correlated with the stress.
摘要:
Material condition monitoring may be performed by electromagnetic sensors and sensor arrays mounted to the material surface. The sensors typically have a periodic winding or electrode structure that creates a periodic sensing field when driven by an electrical signal. The sensors can be thin and flexible so that they conform to the surface of the test material. They can also be mounted such that they do not significantly modify the environmental exposure conditions for the test material, such as by creating stand-off gaps between the sensor and material surface or by perforating the sensor substrate.
摘要:
Magnetic field based eddy-current sensing arrays measure the near surface properties conducting and magnetic materials. The arrays have a drive winding for imposing the magnetic field in a test material and at least two sense elements for sensing the response of the test material to the magnetic field. Each sense element has distinct leads for connection to impedance measurement instrumentation. The arrays have accurately positioned sense elements and drive winding conductors so that the sense element responses are essentially identical for test materials having uniform properties. The drive windings are typically formed into circular loops for examining material properties in the vicinity of circular features in the test material, such as holes or fasteners. For examining the material, the sensor arrays are rotated around the feature or mounted against a material surface and provide information from multiple locations around the feature to determine if cracks are present or to monitor crack growth.
摘要:
Reference standards or articles having prescribed levels of damage are fabricated by monitoring an electrical property of the article material, mechanically loading the article, and removing the load when a change in electrical properties indicates a prescribed level of damage. The electrical property is measured with an electromagnetic sensor, such as a flexible eddy current sensor, attached to a material surface, which may be between layers of the article material. The damage may be in the form of a fatigue crack or a change in the mechanical stress underneath the sensor. The shape of the article material may be adjusted to concentrate the stress so that the damage initiates under the sensor. Examples adjustments to the article shape include the use of dogbone geometries with thin center sections, reinforcement ribs on the edges of the article, and radius cut-outs in the vicinity of the thin section.
摘要:
Inductive sensors measure the near surface properties of conducting and magnetic material. A sensor may have primary windings with parallel extended winding segments to impose a spatially periodic magnetic field in a test material. Those extended portions may be formed by adjacent portions of individual drive coils. Sensing elements provided every other half wavelength may be connected together in series while the sensing elements in adjacent half wavelengths are spatially offset. Certain sensors include circular segments which create a circularly symmetric magnetic field that is periodic in the radial direction. Such sensors are particularly adapted to surround fasteners to detect cracks and can be mounted beneath a fastener head. In another sensor, sensing windings are offset along the length of parallel winding segments to provide material measurements over different locations when the circuit is scanned over the test material. The distance from the sensing elements to the ends of the primary winding may be kept constant as the offset space in between sensing elements is varied. An image of the material properties can be provided as the sensor is scanned across the material.
摘要:
Pressurized elastic support structures or balloons are used to press flexible sensors against the surface a material under test. Rigid support elements can also be incorporated into the inspection devices to maintain the basic shape of the inspection structure and to facilitate positioning of the sensors near the test material surface. The rigid supports can have the approximate shape of the test material surface or the pressurization of one or more balloons can be used to conform the sensor to the shape of the test material surface.
摘要:
Magnetic field sensor probes are disclosed which comprise primary or drive windings having a plurality of current carrying segments. The relative magnitude and direction of current in each segment are adjusted so that the resulting interrogating magnetic field follows a desired spatial distribution. By changing the current in each segment, more than one spatial distribution for the magnetic field can be imposed within the same sensor footprint. Example envelopes for the current distributions approximate a sinusoid in Cartesian coordinates or a first-order Bessel function in polar coordinates. One or more sensing elements are used to determine the response of a test material to the magnetic field. These sense elements can be configured into linear or circumferential arrays.
摘要:
Combined wound and micro-fabricated winding constructs are described for the inspection of materials and the detection and characterization of hidden features or flaws. These constructs can be configured as sensors or sensor arrays that are surface mounted or scanned over conducting and/or magnetizable test materials. The well-defined geometry obtained micro-fabricated windings and from carefully wound coils with known winding positions permits the use of model based inversions of sensed responses into material properties. In a preferred embodiment, the primary winding is a wound coil and the sense elements are etched or printed. The drive or sense windings can also be mounted under fasteners to improve sensitivity to hidden flaws. Ferrites and other means may be used to guide the magnetic flux and enhance the magnetic field in the test material.
摘要:
Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.