摘要:
Embodiments are disclosed herein that relate to PEM fuel cells comprising membrane-electrode assemblies having plural membrane layers. For example, one disclosed embodiment provides a fuel cell including an anode, a cathode, and a multi-layer membrane disposed between the anode and the cathode, the multi-layer membrane comprising two or more polymer membranes layers. The fuel cell further comprises an electrolyte within the multi-layer membrane.
摘要:
In one embodiment, a method of making an MEA for a fuel cell comprises arranging a cathodic structure on a first surface of a PEM, and arranging an anodic structure on a second surface of the PEM, opposite the first surface, the anodic structure containing more PA per unit volume than the cathodic structure. The method further comprises pressing the cathodic and anodic structures to the PEM to form the MEA.
摘要:
A method for removing contaminants in a fuel cell comprises: supplying a hydrogen-based fuel to the anode; supplying a first oxidant to the cathode, wherein the first oxidant comprises at least some sulfur dioxide; drawing a primary load from the fuel cell stack while supplying the hydrogen-based fuel to the anode and the air to the cathode; shutting down the fuel cell when a voltage of the fuel cell is equal to or less than a threshold voltage at which sulfur crosses over from the cathode to the anode, wherein shutting down the fuel cell comprises: performing at least one oxidant starvation while drawing the primary load, removing the primary load after performing the at least one oxidant starvation, and bringing the anode to a high potential after removing the primary load; and thereafter, restarting the fuel cell.
摘要:
Certain fuel cells (e.g., solid polymer electrolyte fuel cells) may temporarily exhibit below normal performance after initial manufacture or after prolonged storage. While normal performance levels may be obtained after operating such fuel cells for a suitable time period, this process can take of order of days to fully complete. However, exposing the cathode to a reductant (e.g., hydrogen) can provide for normal performance levels without the need for a lengthy initial operating period.
摘要:
A method for removing contaminants in a fuel cell comprises: supplying a hydrogen-based fuel to the anode; supplying a first oxidant to the cathode, wherein the first oxidant comprises at least some sulfur dioxide; drawing a primary load from the fuel cell stack while supplying the hydrogen-based fuel to the anode and the air to the cathode; shutting down the fuel cell when a voltage of the fuel cell is equal to or less than a threshold voltage at which sulfur crosses over from the cathode to the anode, wherein shutting down the fuel cell comprises: performing at least one oxidant starvation while drawing the primary load, removing the primary load after performing the at least one oxidant starvation, and bringing the anode to a high potential after removing the primary load; and thereafter, restarting the fuel cell.
摘要:
The electrochemical performance of an ion-exchange membrane in a fuel cell system may be improved by impregnating therein a perfluoroamine. The amine may be primary, secondary or tertiary. Further, the amine is preferably water insoluble or only slightly water soluble. For example, the amine may be perfluorotriamylamine or perfluorotributylamine. Use of such a membrane system within a fuel cell may allow high or low temperature operation (i.e. at temperatures greater than 100° C. or less than 0° C.) as well as operation at low relative humidity.