Abstract:
The invention relates to a method for producing a device for material exchange between two mediums, in which at least one mat of semipermeable hollow fibres (3) is wound onto a winding core (2), which has at least one core opening (2a) in its outer surface for a first in- or out-flowing medium, and the winding core (2) is arranged in an axially extending housing (1) having at least one housing opening (1a) for the first in- or out-flowing medium, and the axial end regions of the housing (1) are sealed by an adhesive (4) arranged around the hollow fibres (3), wherein at least one chamber region (5) surrounding the hollow fibres (3) is formed via the adhesion between the axial end regions (1b, 1c) of the housing (1) and between the winding core (2) and the housing (1), through which chamber region the first medium can flow via the core opening (2a) and the housing opening (1a), wherein the axial distance between the core opening (2a) and the housing opening (1a) is adjusted to a desired value of multiple possible values via the axial shifting of the winding core (2) relative to the hollow fibre winding (3) arranged around the winding core (2) and relative to the housing (1), and the hollow fibres (3) are adhered to the side of the housing (1) near to the housing opening (1a) in a region between the axial end surface of the housing and the housing opening (1a), and the hollow fibres (3) are adhered to the side of the housing (1) near to the core opening (2a) in a region between the axial end surface of the housing and the core opening (2a). The invention also relates to a number of multiple devices for material exchange between two mediums, wherein all devices comprise at least identical housings (1) and winding cores (2) that are identical at least in regions.
Abstract:
A method for making a titania-polymer nanocomposite by simultaneously forming TiO2 nanoparticles in situ from a TiO2 precursor in the presence of urea and interfacially polymerizing polyamide precursors thereby producing a titania-polymer nanocomposite. A titania-polymer nanocomposite made by this method. A method for removing a dye or metal from water comprising contacting contaminated water with the titania-polymer nanocomposite.
Abstract:
This disclosure provides an integrated system and method for producing purified water, hydrogen, and oxygen from contaminated water. The contaminated water may be derived from regolith-based resources on the moon, Mars, near-Earth asteroids, or other destination in outer space. The integrated system and method utilize a cold trap to receive the contaminated water in a vapor phase and selectively freeze out water from one or more volatiles. A heat source increases temperature in the cold trap to vaporize the frozen contaminated water to produce a gas stream of water vapor and volatiles. A chemical scrubber may remove one or more volatiles. The integrated system and method utilize ionomer membrane technology to separate the water vapor from remaining volatiles. The water vapor is delivered for crew use or delivered to an electrolyzer to produce hydrogen and oxygen.
Abstract:
Provided are a wiring base plate and the like including an insulating substrate including a first surface portion including an aluminum oxide-based sintered body and a mullite-based sintered body; and a metallization layer including a second surface portion, the second surface portion containing at least one of a manganese compound and a molybdenum compound and being in contact with the first surface portion of the insulating substrate; wherein the second surface portion of the metallization layer and the first surface portion of the insulating substrate contain at least one of a manganese silicate phase and a magnesium silicate phase.
Abstract:
A separation apparatus 10 includes a pretreatment section 20 that subjects a target fluid containing an olefin compound to at least one or more of a treatment for reducing an acetylene-based compound, a treatment for reducing a sulfur compound, and a treatment for reducing a fine particle component. In the pretreatment section 20, one or more treatments selected from a hydrotreating and an adsorption treatment with an adsorbent may be performed as the treatment for reducing the acetylene-based compound, one or more treatments selected from a washing and absorption treatment, an adsorption treatment with an adsorbent, and a hydrodesulfurization treatment may be performed as the treatment for reducing the sulfur compound, and one or more treatments selected from a liquid absorption treatment, a collection treatment, or a filtration treatment with a filter may be performed as the treatment for reducing the fine particle component.
Abstract:
Provided herein are methods for forming nanofibers. The current disclosure provides ceramic nanofibers, morphology-controlled ceramic-polymer hybrid nanofibers, morphology-controlled ceramic nanofibers, core-sheath nanofibers and hollow core nanofibers using ceramic precursor materials and polymer materials which are combined and undergo electrospinning. The current disclosure provides for methods of forming these nanofibers at low temperatures such as room temperature and in the presence of oxygen and moisture wherein the ceramic precursor cures to a ceramic material during the electrospinning process. Also disclosed are the nanofibers prepared by the disclosed methods.
Abstract:
A separating material superior to conventional separating materials, and a separation method are provided, with which 1,3-butadiene is selectively separated and recovered from a mixed gas including 1,3-butadiene and C4 hydrocarbons other than 1,3-butadiene. A metal complex, which comprises a dicarboxylic acid compound (I) (see (I) below) represented by general formula (I), an ion of a metal such as beryllium, and a bipyridyl compound (II) represented by general formula (II), namely L-Z-L (II) (see (L) below), is characterized by including, as the dicarboxylic acid compound (I), at least two different dicarboxylic acid compounds (I). The metal complex is used as a 1,3-butadiene separating material. Formula (I) L is represented by any of the compounds below. Formula (L).
Abstract:
According to example embodiments, a separation membrane includes a graphene on at least one surface of a polymer support. The graphene may include a plurality of grains defined by grain boundaries.
Abstract:
The present disclosure relates to polymeric matrices composed of protected amine compound residues and membranes composed from such polymeric matrices. In particular, the present disclosure relates to a polymeric matrix comprising amine compound residues, acyl compound residues and protected amine compound residues.
Abstract:
The invention relates to hydrophilic membranes which are supplemented or treated with a non-ionic surfactant and processes for preparing such membranes. The membranes are particularly suitable for plasma separation or for haemodialysis and haemodiafiltration, but can also advantageously be used in other applications. Accordingly, the invention is further directed to the use of such membranes for plasma separation, plasma filtration, micro filtration, plasma therapy, haemodialysis and haemodiafiltration or cell filtration applications, respectively. The treated hydrophilic membranes show excellent biocompatibility, such as reduced platelet drop and decreased TAT levels.