Abstract:
An improved diode energy converter for chemical kinetic electron energy transfer is formed using nanostructures and includes identifiable regions associated with chemical reactions isolated chemically from other regions in the converter, a region associated with an area that forms energy barriers of the desired height, a region associated with tailoring the boundary between semiconductor material and metal materials so that the junction does not tear apart, and a region associated with removing heat from the semiconductor.
Abstract:
A method and apparatus that converts energy provided by a chemical reaction into energy for charging a quantum well device. The disclosed apparatus comprises a catalyst layer that catalyzes a chemical reaction and captures hot electrons and hot phonons generated by the chemical reaction, and an interface layer placed between the catalyst layer and a quantum well. The interface layer facilitates the transfer of hot electrons and hot phonons from the catalyst layer into the quantum well layer. The interface layer can also convert hot electrons into hot phonons, and vice versa, depending upon the needs of the particular quantum well device. Because the hot electrons and the hot phonons are unstable and readily degrade into heat energy, the dimensions of the catalyst layer and the interface layer are very small. To improve the efficiency of the transfer of hot electrons and hot phonons to the quantum well, other interface layers, such as a catalyst interlayer and a catalyst interface, may be utilized.