Abstract:
A system, method, and machine-readable storage medium for restoring a data object for a specified active time period are provided. In some embodiments, the method includes receiving, by a storage device from a client, a request specifying an active time period for a data object to remain stored on an accessible tier. The method also includes determining, by the storage device, that the active time period has elapsed. The method further includes responsive to a determination that the active time period has elapsed, sending, by the storage device, a request to a server storing the data object to move the data object from the accessible tier to an archive tier. Data objects that are stored on the accessible tier are accessible by the client, and data objects that are stored on the archive tier are inaccessible by the client.
Abstract:
A method, non-transitory computer readable medium, and storage management computing device that assists with distributing erasure coded fragments in geo-distributed storage nodes includes receiving an object and a storage reliability requirement from a client computing device. Erasure coding is performed on the received object using an erasure coding scheme. An erasure coding group from a plurality of erasure coding groups present in a plurality of geographically distributed storage nodes is determined based on the received storage reliability requirement and the erasure coding scheme. The erasure coded object is distributed to the determined erasure coding group from the plurality of erasure coding groups in the plurality of geographically distributed storage nodes.
Abstract:
A system, method, and machine-readable storage medium for analyzing a state of a data object are provided. In some embodiments, the method includes receiving, at a storage device, a metadata request for the data object from a client. The data object is composed of a plurality of segments. The method also includes selecting a subset of the plurality of segments and obtaining a segment state for each segment of the subset. Each segment state indicates whether the respective segment is accessible via a backing store. The method further includes determining a most restrictive state of the one or more segment states and sending state information to the client in response to the metadata request, the state information being derived from the most restrictive state.
Abstract:
A system, method, and machine-readable storage medium for analyzing a state of a data object are provided. In some embodiments, the method includes receiving, at a storage device, a metadata request for the data object from a client. The data object is composed of a plurality of segments. The method also includes selecting a subset of the plurality of segments and obtaining a segment state for each segment of the subset. Each segment state indicates whether the respective segment is accessible via a backing store. The method further includes determining a most restrictive state of the one or more segment states and sending state information to the client in response to the metadata request, the state information being derived from the most restrictive state.
Abstract:
A system, method, and machine-readable storage medium for analyzing a state of a data object are provided. In some embodiments, the method includes receiving, at a storage device, a metadata request for the data object from a client. The data object is composed of a plurality of segments. The method also includes selecting a subset of the plurality of segments and obtaining a segment state for each segment of the subset. Each segment state indicates whether the respective segment is accessible via a backing store. The method further includes determining a most restrictive state of the one or more segment states and sending state information to the client in response to the metadata request, the state information being derived from the most restrictive state.
Abstract:
A system, method, and machine-readable storage medium for restoring a data object for a specified active time period are provided. In some embodiments, the method includes receiving, by a storage device from a client, a request specifying an active time period for a data object to remain stored on an accessible tier. The method also includes determining, by the storage device, that the active time period has elapsed. The method further includes responsive to a determination that the active time period has elapsed, sending, by the storage device, a request to a server storing the data object to move the data object from the accessible tier to an archive tier. Data objects that are stored on the accessible tier are accessible by the client, and data objects that are stored on the archive tier are inaccessible by the client.
Abstract:
A method, non-transitory computer readable medium, and storage management computing device that assists with distributing erasure coded fragments in geo-distributed storage nodes includes receiving an object and a storage reliability requirement from a client computing device. Erasure coding is performed on the received object using an erasure coding scheme. An erasure coding group from a plurality of erasure coding groups present in a plurality of geographically distributed storage nodes is determined based on the received storage reliability requirement and the erasure coding scheme. The erasure coded object is distributed to the determined erasure coding group from the plurality of erasure coding groups in the plurality of geographically distributed storage nodes.
Abstract:
A method, non-transitory computer readable medium, and device that provides staging area for an object prior to erasure coding includes receiving an object from a client computing device to ingest to a plurality of storage servers. The received object is cached in one or more memory locations. A notification is provided to the client computing device indicating successful receipt of the object. The received object is distributed across the plurality of storage servers upon providing the notification to the client computing device.
Abstract:
A system, method, and machine-readable storage medium for restoring a data object for a specified active time period are provided. In some embodiments, the method includes receiving, by a storage device from a client, a request specifying an active time period for a data object to remain stored on an accessible tier. The method also includes determining, by the storage device, that the active time period has elapsed. The method further includes responsive to a determination that the active time period has elapsed, sending, by the storage device, a request to a server storing the data object to move the data object from the accessible tier to an archive tier. Data objects that are stored on the accessible tier are accessible by the client, and data objects that are stored on the archive tier are inaccessible by the client.
Abstract:
A system, method, and machine-readable storage medium for restoring a data object for a specified active time period are provided. In some embodiments, the method includes receiving, by a storage device from a client, a request specifying an active time period for a data object to remain stored on an accessible tier. The method also includes determining, by the storage device, that the active time period has elapsed. The method further includes responsive to a determination that the active time period has elapsed, sending, by the storage device, a request to a server storing the data object to move the data object from the accessible tier to an archive tier. Data objects that are stored on the accessible tier are accessible by the client, and data objects that are stored on the archive tier are inaccessible by the client.