摘要:
An illumination system of a microlithographic projection exposure apparatus can include at least one transmission filter which has a different transmittance at least at two positions and which is arranged between a pupil plane and a field plane). The transmittance distribution can be determined such that it has field dependent correcting effects on the ellipticity. In some embodiments the telecentricity and/or the irradiance uniformity is not affected by this correction.
摘要:
An illumination system of a microlithographic projection exposure apparatus can include at least one transmission filter which has a different transmittance at least at two positions and which is arranged between a pupil plane and a field plane). The transmittance distribution can be determined such that it has field dependent correcting effects on the ellipticity. In some embodiments the telecentricity and/or the irradiance uniformity is not affected by this correction.
摘要:
An illumination system of a microlithographic projection exposure apparatus can include at least one transmission filter which has a different transmittance at least at two positions and which is arranged between a pupil plane and a field plane). The transmittance distribution can be determined such that it has field dependent correcting effects on the ellipticity. In some embodiments the telecentricity and/or the irradiance uniformity is not affected by this correction.
摘要:
An illumination system of a microlithographic projection exposure apparatus can include at least one transmission filter which has a different transmittance at least at two positions and which is arranged between a pupil plane and a field plane. The transmittance distribution can be determined such that it has field dependent correcting effects on the ellipticity. In some embodiments the telecentricity and/or the irradiance uniformity is not affected by this correction.
摘要:
The invention relates to a system for reducing the coherence of a wave front-emitting laser radiation, especially for a projection lens for use in semiconductor lithography, wherein a first partial beam of a laser beam incident on a surface of a resonator body is partially reflected. A second partial beam penetrates the resonator body and emerges from the resonator body at least approximately in the area of entry after a plurality of total internal reflections. The two partial beams are then passed on jointly to an illumination plane. The resonator body is adapted, in addition to splitting the laser beam into partial beams, to modulate the wave fronts of at least one partial beam during a laser pulse. The partial beams reflected on the resonator body and penetrating the resonator body are superimposed downstream of the resonator body. The resonator body is provided with a phase plate having different local phase distribution.
摘要:
The invention relates to a system for reducing the coherence of a wave front-emitting laser radiation, especially for a projection lens for use in semiconductor lithography, wherein a first partial beam of a laser beam incident on a surface of a resonator body is partially reflected. A second partial beam penetrates the resonator body and emerges from the resonator body at least approximately in the area of entry after a plurality of total internal reflections. The two partial beams are then Passed on jointly to an illumination plane. The resonator body is adapted, in addition to splitting the laser beam into partial beams, to modulate the wave fronts of at least one partial beam during a laser pulse. The partial beams reflected on the resonator body and penetrating the resonator body are superimposed downstream of the resonator body. The resonator body is provided with a phase plate having different local phase distribution.
摘要:
In an exposure method for producing an image of a pattern, arranged in the object surface of a projection objective, in the image surface of the projection objective, the mask is illuminated with illumination radiation with the aid of the illumination system. The radiation varied by the mask and which enters the projection objective is thereby produced downstream of the mask. The projection objective is transirradiated with this radiation. An astigmatic variation of the radiation varied by the mask is effected in the region of at least one pupil surface of the projection objective, the astigmatic variation being designed such that an anisotropy of properties of the radiation striking the image surface that leads to direction-dependent contrast differences is at least partially compensated. The astigmatic variation can be achieved, for example, with the aid of an elliptical diaphragm or an elliptical transmission filter.
摘要:
An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects. The raster elements of the two raster arrangements are arranged relative to one another in such a way that to each raster element type (I to III) is allocated at least one individual distance (ΔI, ΔII, ΔIII) between the first raster element of this type (I to III) and the allocated second raster element of the second raster arrangement. As a result, an illumination system is obtained which allows particular illumination parameters to be influenced in such a way that undesirable influences on other illumination parameters are avoided to the greatest extent possible.
摘要:
An illumination system for a microlithographic projection exposure step-and-scan apparatus has a light source, a first optical raster element and a second optical raster element. The first optical raster element extends in a first pupil plane of the illumination system and is designed such that the geometrical optical flux of the system is increased perpendicular to a scan direction of the projection exposure apparatus. The second optical raster element extends in a second pupil plane of the illumination system, which is not necessarily different from the first pupil plane, and is designed such that the geometrical optical flux of the system is increased in the scan direction and perpendicular thereto. This makes it possible to improve the irradiance uniformity in a reticle plane.
摘要:
The invention relates to a filter device for an illumination system, especially for the correction of the illumination of the illuminating pupil, including a light source, with the illumination system being passed through by a bundle of illuminating rays from the light source to an object plane, with the bundle of illuminating rays impinging upon the filter device, including at least one filter element which can be introduced into the beam path of the bundle of illuminating rays, with the filter element including an actuating device, so that the filter element can be brought with the help of the actuating device into the bundle of illuminating rays.