摘要:
Human somatic cells obtained from individuals with a genetic heart condition are reprogrammed to become induced pluripotent stem cells (iPS cells), and differentiated into cardiomyocytes for use in analysis, screening programs, and the like.
摘要:
Human somatic cells obtained from individuals with a genetic heart condition are reprogrammed to become induced pluripotent stem cells (iPS cells), and differentiated into cardiomyocytes for use in analysis, screening programs, and the like.
摘要:
Cardiovascular cell proliferation in a blood vessel subjected to trauma, such as angioplasty, vascular graft, anastomosis, or organ transplant, can be inhibited by contacting the vessel with a polymer consisting of from 6 to about 30 amino acid subunits, where at least 50% of the subunits are arginine, and the polymer contains at least six contiguous arginine subunits. Exemplary polymers for this purpose include arginine homopolymers 7 to 15 subunits in length.
摘要:
Cardiovascular cell proliferation in a blood vessel subjected to trauma, such as angioplasty, vascular graft, anastomosis, or organ transplant, can be inhibited by contacting the vessel with a polymer consisting of from 6 to about 30 amino acid subunits, where at least 50% of the subunits are arginine, and the polymer contains at least six contiguous arginine subunits. Exemplary polymers for this purpose include arginine homopolymers 7 to 15 subunits in length.
摘要:
A transmural ablation device is provided to achieve endocardial and epicardial ablation at the same site but directed from the inner and outer surfaces of the heart to create a transmural lesion. By ablating from both sides of the heart tissue, it is possible to increase the depth of the lesion created and to increase the likelihood of a transmural lesion. Embodiments pertain to techniques to align the endocardial and epicardial ablation elements and techniques to position and move the endocardial and epicardial ablation elements along a predefined linear, curvilinear, or circular path. The ability to bring the epicardial and endocardial elements more closely or firmly with the underlying tissue is important in creating optimal lesions. Magnetic force attracts the epicardial and endocardial elements.