摘要:
A comparing circuit of the present invention includes: a charging and discharging circuit to charge a capacitor with charging current and discharge the capacitor with discharging current alternately in response to a switch of an input pulse signal; a comparator circuit to compare a capacitor-voltage (Csig) of the capacitor with a first threshold voltage (Vth1) and the capacitor-voltage (Csig) with a second threshold voltage (Vth2), which is higher than the first threshold voltage, to generate a pulse signal responsive to a result of this comparison, and to supply an output-signal generating circuit with the pulse signal to switch a level of an output pulse-signal; and a logical operation circuit to adjust a value of the charging current and a value of the discharging current by generating a signal that is based on the pulse signal and is to adjust the value of the charging current and the value of the discharging current of the charging and discharging circuit and supplying the charging and discharging circuit with the signal thus generated. This configuration makes it possible for the comparing circuit to maintain capability of preventing errors, and at the same time, improve in capability of outputting a pulse having a same period as that of an input pulse having a short pause period.
摘要:
In a gain variable amplifier, a carrier detection circuit system, and an infrared remote-control receiver using the gain variable amplifier or the carrier detection circuit system, to each of a positive output voltage Vo1 and a negative output voltage Vo2 of an amp to be subjected to gain control, connected is an AGC circuit output current (½) Iagc which is one-half of a gain control current and is a constant current. With this arrangement, it is possible to provide the gain variable amplifier, the carrier detection circuit system, both of which can reduce noise superimposed on the gain control current, and it is also possible to provide the infrared remote-control receiver using the gain variable amplifier or the carrier detection circuit system.
摘要:
A comparator circuit of the present invention includes a comparator section and a current buffer circuit. In a normal mode, a standby current outputted from the comparator section is amplified by a predetermined times at the current buffer circuit. On the other hand, the standby current is not amplified in a standby mode.
摘要:
A comparing circuit of the present invention includes: a charging and discharging circuit to charge a capacitor with charging current and discharge the capacitor with discharging current alternately in response to a switch of an input pulse signal; a comparator circuit to compare a capacitor-voltage (Csig) of the capacitor with a first threshold voltage (Vth1) and the capacitor-voltage (Csig) with a second threshold voltage (Vth2), which is higher than the first threshold voltage, to generate a pulse signal responsive to a result of this comparison, and to supply an output-signal generating circuit with the pulse signal to switch a level of an output pulse-signal; and a logical operation circuit to adjust a value of the charging current and a value of the discharging current by generating a signal that is based on the pulse signal and is to adjust the value of the charging current and the value of the discharging current of the charging and discharging circuit and supplying the charging and discharging circuit with the signal thus generated. This configuration makes it possible for the comparing circuit to maintain capability of preventing errors, and at the same time, improve in capability of outputting a pulse having a same period as that of an input pulse having a short pause period.
摘要:
A semiconductor wafer of the present invention includes switch circuits each connecting a corresponding internal circuit formed in the semiconductor chip and the test pad. The semiconductor wafer also includes switch control pads which are provided in the scribing region or the semiconductor chips. Voltages of the switch control pads are pulled up or down to a voltage that is equal to a substrate voltage of the semiconductor wafer. The switch control pads are provided with signals whose voltages are different from the substrate voltage so that the switch circuits are turned on. Moreover, each of the test pads, which intervenes between the semiconductor chips adjacent to each other, is connected to at least one of said switch circuits of each of the adjacent semiconductor chips.
摘要:
A carrier detecting circuit which generates a carrier detection level by integral action based on a reception signal and detects using the carrier detection level whether a carrier exists is disclosed and includes an integration capacitor that is charged and discharged using a difference current between a current charged from a charging circuit and a current discharged to a discharging circuit, where the charging circuit and the discharging circuit are provided in an integrator which performs the integral action.
摘要:
A comparator circuit of the present invention includes a comparator section and a current buffer circuit. In a normal mode, a standby current outputted from the comparator section is amplified by a predetermined times at the current buffer circuit. On the other hand, the standby current is not amplified in a standby mode.
摘要:
A conventional carrier detecting circuit which generates a carrier detection level by integral action based on a reception signal and detects using the carrier detection level whether a carrier exists is arranged to charge and discharge in the following manner, an integration capacitor in an integrator that performs the integral action. Namely, the integration capacitor is (i) either charged or discharged in accordance with a result of the discrimination of the reception signal at the carrier detection level, or (ii) charged in accordance with the result of the discrimination while the integration capacitor is constantly discharged at a constant level. In contrast, a carrier detecting circuit of the present invention is arranged so that the integration capacitor is both charged and discharged constantly at a level that varies in accordance with the result of the discrimination. In other words, the integration capacitor is charged and discharged using a difference current between a current charged from a charging circuit and a current discharged to a discharging circuit. With this, it is possible to reduce the chip area without causing problems due to the reduction of the currents flowing through the transistors.
摘要:
A display panel substrate includes a plurality of pixels, a pixel in the display panel substrate including a PIN diode for conducting therethrough a different electric current in accordance with an amount of light received by the light receiving element, a first inorganic insulating film formed on the PIN diode, a line formed on or above the first inorganic insulating film and electrically connected to the PIN diode, an organic insulating film formed on or above the line, a transparent pixel electrode formed on the organic insulating film, and a transparent cover electrode provided at such a position that the transparent electrode is located between the organic insulating film and the first inorganic insulating film and formed to cover at least a part of an I-layer of the PIN diode.
摘要:
In a transistor of the invention, at a boundary between gate oxide 112 formed on a silicon substrate 101 of a device formation region 10 and a device isolation film 110 adjoining the gate oxide 112, a thickness D′ of the gate electrode 114 is set larger than a uniform thickness D of the gate electrode 114 on the gate oxide 112. A height difference A between a surface of the gate oxide 112 and a surface of the device isolation film 110, a width B of a step portion 110b of the device isolation film, and the thickness D of the gate electrode 114 in its uniform-thickness portion satisfy relationships that D>B and A/D+(1−(B/D)2 )0.5>1. By ion implantation via the gate electrode 114 and the gate oxide 112, an impurity is added into a surface portion of the silicon substrate 101 at an end portion 11 of the device formation region, the impurity having concentrations higher than in the surface portion of the silicon substrate 101 in the electrode uniform portion 12 of the device formation region. The transistor can be prevented from occurrence of the inverse narrow channel effect and kink characteristics, thus being suitable for scale-down of LSIs, and yet can be manufactured with less steps.