摘要:
A printhead assembly including a printhead module and a mounting structure is described. The printhead module is mounted on a receiving surface of the mounting structure and includes a first edge and a second edge opposite the first edge. The first and second edges extend beyond edges of the receiving surface by a first distance in a first direction and are positioned between featured edges of the mounting structure in a second direction that is substantially perpendicular to the first direction. Each featured edge includes a first feature protruding from the featured edge by a second distance in the first direction, where the second distance is greater than the first distance. The first features extend beyond the first and second edges of the printhead module. Each featured edge includes a recessed second feature configured to receive a first feature of a neighboring mounting structure.
摘要:
A printhead assembly including a printhead module and a mounting structure is described. The printhead module is mounted on a receiving surface of the mounting structure and includes a first edge and a second edge opposite the first edge. The first and second edges extend beyond edges of the receiving surface by a first distance in a first direction and are positioned between featured edges of the mounting structure in a second direction that is substantially perpendicular to the first direction. Each featured edge includes a first feature protruding from the featured edge by a second distance in the first direction, where the second distance is greater than the first distance. The first features extend beyond the first and second edges of the printhead module. Each featured edge includes a recessed second feature configured to receive a first feature of a neighboring mounting structure.
摘要:
A liquid ejection apparatus includes: a circuit control device including switches of which first ends are connected to pressure generating elements; a voltage waveform generating device configured to generate a voltage waveform to be supplied to second ends of the switches; and a switch control device which causes the switches to close and open. The voltage waveform has a waveform such that, when the switch is caused to close and open so that a portion of the voltage waveform is applied to the pressure generating element, a droplet is ejected from a nozzle corresponding to the pressure generating element to which the portion of the voltage waveform has been applied, whereas when a whole of the voltage waveform is applied to the pressure generating element, no droplet is substantially ejected from the nozzle corresponding to the pressure generating element to which the whole of the voltage waveform has been applied.
摘要:
A liquid circulation apparatus includes: a plurality of liquid ejection elements each of which includes a nozzle, a pressure chamber which is connected to the nozzle and accommodates liquid, and a piezoelectric element which displaces a wall of the pressure chamber to eject the liquid in the pressure chamber through the nozzle; a plurality of individual supply channels which are respectively connected to the liquid ejection elements; a common supply channel which is connected to the individual supply channels, the liquid being supplied from the common supply channel to the liquid ejection elements through the individual supply channels; a plurality of individual circulation channels which are respectively connected to the liquid ejection elements; a common circulation channel which is connected to the individual circulation channels, the liquid being circulated from the liquid ejection elements to the common circulation channel through the individual circulation channels; and a control device which controls a circulation volume of the liquid circulated from the liquid ejection elements to the common circulation channel, by adjusting a supply volume of the liquid supplied from the common supply channel to the liquid ejection elements in accordance with an ejection volume of the liquid ejected from the liquid ejection elements.
摘要:
The liquid ejection apparatus comprises: a plurality of ejection ports which eject liquid; a plurality of pressure chambers which are connected respectively to the ejection ports; pressure generating elements which are provided to correspond respectively to the pressure chambers and create a pressure change in the liquid in the respective pressure chambers; a common flow channel which is connected to the pressure chambers and supplies the liquid to the pressure chambers; a movable member which is disposed inside the common flow channel and can move while making contact with a flow channel wall forming one portion of an internal circumferential surface of the common flow channel; and a movement device which moves the movable member inside the common flow channel.
摘要:
The liquid droplet ejection mechanism includes: a first ink tank and a second ink tank which store ink; a plurality of ink chamber units which are capable of ejecting the ink; a first common flow channel which connects the first ink tank with the plurality of ink chamber units; and a second common flow channel which connects the second ink tank with the plurality of ink chamber units, wherein: the ink supplied from the first ink tank circulates in such a manner that the ink flows through the first common flow channel, the ink chamber units that do not eject the ink, and the second common flow channel to the second ink tank to be recovered in the second ink tank; the plurality of ink chamber units include a nearest connection ink chamber unit which is connected to the first ink tank at the shortest distance from the first ink tank, of the plurality of ink chamber units, and is also connected to the second ink tank at the shortest distance from the second ink tank, of the plurality of ink chamber units; and taking pressure in the first ink tank to be Pi, taking pressure in the second ink tank to be Po, taking volume of the ink circulated per unit time from the first ink tank to the second ink tank when the plurality of ink chamber units do not eject the ink to be Uo, taking the ratio between volume of the ink supplied per unit time from the ink supply channel and volume of ink supplied per unit time from the ink circulation channel when the ink is being ejected from at least one of the ink chamber units to be αi:αo, taking total volume of the ink ejected per unit time from all of the ink chamber units which are ejecting ink to be Q, taking flow channel resistance from a connection section with the first ink tank to a connection section with the nearest connection ink chamber unit in the first common flow channel to be Ri, taking the flow channel resistance from a connection section with the second ink tank to a connection section with the nearest connection ink chamber unit in the second common flow channel to be Ro1, taking flow channel resistance in the first common flow channel between mutually adjacent ink chamber units to be R1, taking the flow channel resistance in the second common flow channel between mutually adjacent ink chamber units to be R2, and taking the total number of ink chamber units to be Z, both following conditions are satisfied: {Pi−Ri×(αi×Q+Uo)}≧{Po−Ro1×(αo×Q−Uo)}, and [Pi−Ri×(αi×Q+Uo)−R1×(Z−1)×{(α1×Q)/2+Uo/2}]≧[Po−Ro1×(αo×Q−Uo)−R2×(Z−1)×{(αo×Q)/2−Uo/2}].
摘要:
A system for ejecting droplets of a fluid is described. The system includes a substrate having a flow path body that includes a fluid pumping chamber, a descender fluidically connected to the fluid pumping chamber, and a nozzle fluidically connected to the descender. The nozzle is arranged to eject droplets of fluid through an outlet formed in an outer substrate surface. The flow path body also includes a recirculation passage fluidically connected to the descender. The system for ejecting droplets of a fluid also includes a fluid supply tank fluidically connected to the fluid pumping chamber, a fluid return tank fluidically connected to the recirculation passage, and a pump fluidically connecting the fluid return tank and the fluid supply tank. In some implementations, a flow of fluid through the flow path body is at a flow rate sufficient to force air bubbles or contaminants through the flow path body.
摘要:
The liquid ejection apparatus includes: a liquid ejection head which has a nozzle surface including a plurality of nozzles; a cap device which comes in contact with the nozzle surface of the liquid ejection head and enables liquid inside the nozzles to be suctioned or pressurized; and a selection device which selects whether or not the liquid inside the nozzles is suctioned or pressurized, for each of at least two nozzle groups into which the nozzles are divided.
摘要:
A fluid ejection module includes a die having a plurality of substantially identical fluid ejector units formed therein. Each fluid ejector unit includes a flow path formed therethrough, the flow path including a pumping chamber fluidically connected to a nozzle, and an actuator assembly including a membrane providing a wall of the pumping chamber and an actuator, the actuator assembly configured to eject fluid from a pumping chamber through an associated nozzle. The plurality of individually actuatable fluid ejector units includes a plurality of individually actuatable first fluid ejector units and at least one second fluid ejector unit, and the actuator assembly of the at least one second fluid ejector unit includes a material deposited on the actuator such that the actuator assembly of the at least one second fluid ejector unit is stiffer than the actuator assemblies of the first fluid ejector units.
摘要:
The liquid droplet ejection mechanism includes: a first ink tank and a second ink tank which store ink; a plurality of ink chamber units which are capable of ejecting the ink; a first common flow channel which connects the first ink tank with the plurality of ink chamber units; and a second common flow channel which connects the second ink tank with the plurality of ink chamber units, wherein: the ink supplied from the first ink tank circulates in such a manner that the ink flows through the first common flow channel, the ink chamber units that do not eject the ink, and the second common flow channel to the second ink tank to be recovered in the second ink tank; the plurality of ink chamber units include a nearest connection ink chamber unit which is connected to the first ink tank at the shortest distance from the first ink tank, of the plurality of ink chamber units, and is also connected to the second ink tank at the shortest distance from the second ink tank, of the plurality of ink chamber units; and taking pressure in the first ink tank to be Pi, taking pressure in the second ink tank to be Po, taking volume of the ink circulated per unit time from the first ink tank to the second ink tank when the plurality of ink chamber units do not eject the ink to be Uo, taking the ratio between volume of the ink supplied per unit time from the ink supply channel and volume of ink supplied per unit time from the ink circulation channel when the ink is being ejected from at least one of the ink chamber units to be αi:αo, taking total volume of the ink ejected per unit time from all of the ink chamber units which are ejecting ink to be Q, taking flow channel resistance from a connection section with the first ink tank to a connection section with the nearest connection ink chamber unit in the first common flow channel to be Ri, taking the flow channel resistance from a connection section with the second ink tank to a connection section with the nearest connection ink chamber unit in the second common flow channel to be Ro1, taking flow channel resistance in the first common flow channel between mutually adjacent ink chamber units to be R1, taking the flow channel resistance in the second common flow channel between mutually adjacent ink chamber units to be R2, and taking the total number of ink chamber units to be Z, both following conditions are satisfied: {Pi−Ri×(αi×Q+Uo)}≧{Po−Ro1×(αo×Q−Uo)}, and [Pi−Ri×(αi×Q+Uo)−R1×(Z−1)×{(α1×Q)/2+Uo/2}]≧[Po−Ro1×(αo×Q−Uo)−R2×(Z−1)×{(αo×Q)/2−Uo/2}].