Filter component tuning using size adjustment

    公开(公告)号:US10476462B2

    公开(公告)日:2019-11-12

    申请号:US15351646

    申请日:2016-11-15

    Abstract: A method for tuning a filter component using size adjustment includes measuring a first frequency of a first resonant mode of a dielectric resonator component of an RF filter, said dielectric resonator component being a block of dielectric material having a cuboid shape with three pairs of opposite faces. The first resonant mode has an electric-field component oriented in a direction perpendicular to one of the pairs of opposite faces and parallel to the other two pairs of opposite faces. When a measured value of the first frequency of the first resonant mode is less than a desired value, dielectric material is removed uniformly from at least one face of the two pairs of opposite faces parallel to the electric-field component of the first resonant mode to maintain the cuboid shape of the block of dielectric material. The removal of the dielectric material may be by at least one of lapping, grinding, and milling. The first frequency of the first resonant mode is remeasured to check whether a remeasured value therefor is closer or equal to the desired value without exceeding the desired value. The method is also applicable for tuning multiple modes of dielectric resonator component in the form of a block of dielectric material having a cuboid shape, as well as for tuning multiple modes in dielectric resonator components in the form of blocks of dielectric material having cylindrical and spherical shapes.

    Hybrid TM-TE-TM Triple-Mode Ceramic Air Cavity Filter

    公开(公告)号:US20180212295A1

    公开(公告)日:2018-07-26

    申请号:US15412150

    申请日:2017-01-23

    Inventor: David R. Hendry

    Abstract: An apparatus includes a filter. The filter includes a metal structure forming a cavity and includes a ceramic block, which is suspended in the cavity. The ceramic block has two removed portions, the removed portions removed from two opposing sides of the ceramic block. The ceramic block further has one or more slots that that span a region of ceramic between the two removed portions and connects chambers formed by the two regions with chambers formed by the one or more slots, wherein a combined structure of the ceramic block, cavity, and metal structure supports multiple fundamental TM modes and one fundamental TE mode. The filter comprises multiple coupling structures to couple radio frequency signals into and out of the filter. The apparatus may include multi-cavity filters including one and typically multiple ones of the filters.

    Filter Component Tuning Using Size Adjustment

    公开(公告)号:US20180041181A1

    公开(公告)日:2018-02-08

    申请号:US15351646

    申请日:2016-11-15

    Abstract: A method for tuning a filter component using size adjustment includes measuring a first frequency of a first resonant mode of a dielectric resonator component of an RF filter, said dielectric resonator component being a block of dielectric material having a cuboid shape with three pairs of opposite faces. The first resonant mode has an electric-field component oriented in a direction perpendicular to one of the pairs of opposite faces and parallel to the other two pairs of opposite faces. When a measured value of the first frequency of the first resonant mode is less than a desired value, dielectric material is removed uniformly from at least one face of the two pairs of opposite faces parallel to the electric-field component of the first resonant mode to maintain the cuboid shape of the block of dielectric material. The removal of the dielectric material may be by at least one of lapping, grinding, and milling. The first frequency of the first resonant mode is remeasured to check whether a remeasured value therefor is closer or equal to the desired value without exceeding the desired value. The method is also applicable for tuning multiple modes of dielectric resonator component in the form of a block of dielectric material having a cuboid shape, as well as for tuning multiple modes in dielectric resonator components in the form of blocks of dielectric material having cylindrical and spherical shapes.

    DRILL TUNING OF APERTURE COUPLING
    4.
    发明申请

    公开(公告)号:US20180205126A1

    公开(公告)日:2018-07-19

    申请号:US15408837

    申请日:2017-01-18

    CPC classification number: H01P1/2084 H01P1/2002 H01P1/208 H01P7/10 H01P11/006

    Abstract: A pair of joined dielectric resonator components of an RF filter includes a first dielectric resonator component and a second dielectric resonator component. The first dielectric resonator component includes a first block of dielectric material, which has a coating of a first conductive material and at least one planar face. The at least one planar face includes a first aperture formed by removing the coating of first conductive material from a portion of the planar face of the first block. The second dielectric resonator component includes a second block of dielectric material, which has a coating of a second conductive material and at least one planar face. The at least one planar face includes a second aperture formed by removing the coating of second conductive material from a portion of the planar face of the second block. The first and second dielectric resonator components are joined to one another with the coating of first conductive material on the planar face of the first block in contact with the coating of second conductive material on the planar face of the second block, and with the first aperture aligned with the second aperture. The second dielectric resonator component has a hole through the coating of second conductive material and into the second block of dielectric material. The hole is outside of the second aperture, and controls electric-field coupling between the first and second dielectric resonator components.

    Triple Mode Sphere Radio Frequency Filters
    5.
    发明申请

    公开(公告)号:US20180151932A1

    公开(公告)日:2018-05-31

    申请号:US15361908

    申请日:2016-11-28

    Inventor: David R. Hendry

    Abstract: An RF filter includes: an electrical conductor defining an outer sphere; a dielectric material defining an inner sphere disposed within the conductor outer sphere; and at least a first electrical probe and a second electrical probe. Each probe extends through the conductor and is electrically insulated from it. A spherical shape of one or both of the inner and outer spheres is interrupted by: a) a first localized discontinuity in said spherical shape disposed along a first axis passing through a geometric center of the one or both of the inner and outer spheres; and b) a second localized discontinuity in said sphere form disposed along a second axis passing through the geometric center, the second axis perpendicular to the first axis. There can be more than these two discontinuities, implemented as chamfers, tuning screws, and the like. Series and parallel coupling of the spheres is detailed.

    FILTER COMPONENT TUNING METHOD
    6.
    发明申请

    公开(公告)号:US20180041407A1

    公开(公告)日:2018-02-08

    申请号:US15227169

    申请日:2016-08-03

    Abstract: Target mode frequencies are calculated for a defined filter component used as a reference for filter components to be tuned. The defined filter component has resonant mode(s), each having a mode frequency which can be tuned to a corresponding target mode frequency via physical adjustment of parameter(s) of the filter component. A tuning equation is formed by linearly relating, via a slope matrix, changes in the mode frequencies to corresponding physical adjustment in the parameter(s), and by using an inverse of the slope matrix as part of the tuning equation. A tuning procedure is performed for a filter component to be tuned, comprising: determining, using the tuning equation, adjustment information for parameter(s) of the filter component to adjust measured mode frequency(ies) of the filter component toward meeting corresponding target mode frequency(ies) for the resonant mode(s) within corresponding tolerance(s); and outputting the determined adjustment information for physical adjustment of the parameter(s).

    Triple mode sphere radio frequency filters

    公开(公告)号:US10283831B2

    公开(公告)日:2019-05-07

    申请号:US15361908

    申请日:2016-11-28

    Inventor: David R. Hendry

    Abstract: An RF filter includes: an electrical conductor defining an outer sphere; a dielectric material defining an inner sphere disposed within the conductor outer sphere; and at least a first electrical probe and a second electrical probe. Each probe extends through the conductor and is electrically insulated from it. A spherical shape of one or both of the inner and outer spheres is interrupted by: a) a first localized discontinuity in said spherical shape disposed along a first axis passing through a geometric center of the one or both of the inner and outer spheres; and b) a second localized discontinuity in said sphere form disposed along a second axis passing through the geometric center, the second axis perpendicular to the first axis. There can be more than these two discontinuities, implemented as chamfers, tuning screws, and the like. Series and parallel coupling of the spheres is detailed.

    Filter component tuning method
    8.
    发明授权

    公开(公告)号:US09882792B1

    公开(公告)日:2018-01-30

    申请号:US15227169

    申请日:2016-08-03

    Abstract: Target mode frequencies are calculated for a defined filter component used as a reference for filter components to be tuned. The defined filter component has resonant mode(s), each having a mode frequency which can be tuned to a corresponding target mode frequency via physical adjustment of parameter(s) of the filter component. A tuning equation is formed by linearly relating, via a slope matrix, changes in the mode frequencies to corresponding physical adjustment in the parameter(s), and by using an inverse of the slope matrix as part of the tuning equation. A tuning procedure is performed for a filter component to be tuned, comprising: determining, using the tuning equation, adjustment information for parameter(s) of the filter component to adjust measured mode frequency(ies) of the filter component toward meeting corresponding target mode frequency(ies) for the resonant mode(s) within corresponding tolerance(s); and outputting the determined adjustment information for physical adjustment of the parameter(s).

Patent Agency Ranking