Abstract:
In a method for printing a functional pattern using a printing apparatus, the printing apparatus applying a recording material on a substrate, the method includes determining a first part and a second part of the functional pattern, and controlling the printing apparatus such to apply a first amount of the recording material per unit area on the substrate to cover the first part and a second amount of the recording material per unit area on the substrate to cover the second part, wherein the first amount is larger than or equal to an amount sufficient to cover the substrate per unit area and the second amount is larger than the first amount. A printing apparatus includes a print head and a control unit. The control unit is configured to have the printing apparatus to execute the method for printing.
Abstract:
An inkjet print head includes an ejection unit having a liquid chamber for holding an amount of liquid, a electromechanical transducer operatively coupled to the liquid chamber for generating a pressure wave in the amount of liquid and a nozzle in fluid communication with the liquid chamber for enabling a droplet of the amount of liquid to be ejected through the nozzle. A method for detecting an operating state of the ejection unit includes the consecutive steps of actuating the electromechanical transducer to generate a pressure wave in the liquid; actuating the electromechanical transducer to suppress a residual pressure wave in the liquid; sensing an amplitude of the residual pressure wave in the liquid; and based on the result of the sensing step determining that the ejection unit is (i) in an operative state if the amplitude of the residual pressure wave is below a threshold or (ii) in a malfunctioning state if the amplitude of the residual pressure wave is above the threshold.
Abstract:
For assessing the functioning of an ejection unit of an inkjet print head, a comparison of a residual pressure wave with a residual pressure wave reference is employed. To enable assessment during printing, multiple residual pressure wave references are provided, each relating to a condition relevant to the residual pressure wave. Such a condition may relate to an actuation status of an adjacent ejection unit which may cause crosstalk, for example. When performing the assessment, the condition during assessment is taken into account, for example for selecting a suitable residual pressure wave reference, such that an appropriate and correct assessment can be performed independent from the conditions during assessment.
Abstract:
A method for manufacturing electrical and/or optical components, wherein a hot melt composition including an alkane based wax and an amorphous material as a masking material is used. The hot melt composition has a melting point of between 40° C. and 85° C. and a viscosity of between 5 and 20 mPa·s at not less than one temperature within the range of between 50° C. and 140° C. A hot melt composition includes between 40 weight % and 89.9 weight % of an alkane based wax; between 10 weight % and 50 weight % of an amorphous material; and between 0.1 weight % and 10 weight % of a phosphonium based ionic liquid. A system and a method for manufacturing electronic and/or optical components is provided, wherein after the etch processes and/or plating processes, the hot melt composition is removed from the substrate with the aid of hot water.
Abstract:
A liquid jetting device comprising a plurality of ejection units each of which is arranged to eject a droplet of a liquid and comprises a nozzle, a liquid duct connected to the nozzle and an electro-mechanical transducer arranged to create an acoustic pressure wave in the liquid in the duct, the device further comprising an electronic control system arranged to receive a pressure signal from at least one of the transducers and to generate a transducer control signal on the basis of the received pressure signal and to control the transducers of said plurality of ejection units to operate in a mode of operation selected from a variety of different modes of operation, wherein the control system is arranged to detect an acoustic property of the liquid of the basis of the received pressure signal and to select the mode of operation in accordance with the detected property, the control system being arranged to deliver transducer control signals to the transducers, which control signals are derived from a common basic waveform that is specified by mode parameters, each mode of operation of the device is specified by a different set of mode parameters, the waveform comprises a jetting pulse and quench pulse following on the jetting pulse, and one of the mode parameters is a time delay between the start of the jetting pulse and the start of the quench pulse.
Abstract:
A printer and a method of printing by depositing liquid droplets (26) onto a substrate (12), wherein a line is printed in a printing direction (B), wherein the droplets (26) forming the line are continuously printed wet-on-wet, and wherein, at least in a middle part of said line, the droplets (26) are printed according to a regular droplet pattern, and wherein, at least in one end part of the line, at least an outermost droplet (26) of the line is printed deviating from the regular droplet pattern, thereby adapting the continuously wet-on-wet printed line for compensating for ink flow behavior which causes deviation from the image to be printed.