Abstract:
A capsule endoscope includes: an imaging unit that images a subject and to acquire an image of the subject and is set to either of a first mode and a second mode; a data acquiring unit that acquires data other than an image; and a control unit that switches a mode of the imaging unit between the first mode and the second mode based on an analysis result of the image and an analysis result of the data. The control unit switches the mode of the imaging unit to the second mode based on the analysis result of the data when the mode of the imaging unit is set to the first mode, and switches the mode of the imaging unit to the first mode based on the analysis result of the image when the mode of the imaging unit is set to the second mode.
Abstract:
An endoscope apparatus according to a present embodiment has a CCD and an LED control section which controls LED1 and LED2. The LED control section sequentially drives the two LEDs, LED1 and LED2, on the basis of an image pickup start timing signal corresponding to each image pickup cycle S for the CCD within the image pickup cycle S such that driving time periods for LED1 and LED2 do not overlap. The LED control section also variably controls the driving time periods for LED1 and LED2 to adjust an amount of exposure within the image pickup cycle S and performs control so as to conduct, within the image pickup cycle S, at least a first drive within the image pickup cycle S of LED2 that is a second or subsequent one to be driven with reference to a timing for driving of LED1 that is driven earlier.
Abstract:
A capsule endoscope includes a first sensor, a second sensor, an information generator, a signal generator, and an imager. The information generator generates third instruction information on the basis of the first instruction information and the second instruction information. The first instruction information is an analysis result of first data generated by the first sensor. The second instruction information is an analysis result of second data generated by the second sensor. The signal generator generates an imaging synchronization signal on the basis of the third instruction information. The imager performs imaging on the basis of the imaging synchronization signal and acquires an image. The information generator generates the third instruction information on the basis of a combination of at least three pieces of instruction information.
Abstract:
An image processing apparatus includes a processor. The processor is configured to output second and third images corresponding to a continuous first image respectively to first and second routes, analyze the second image and output an analysis result, and generate a fourth image based on the third image and the analysis result and continuously output the fourth image. When acquiring the third image, the processor completes the generation of the fourth image before acquiring an analysis result by the second image generated based on a same first image as the first image, which is a generation source of the third image.
Abstract:
A diagnosis support apparatus performs identification for a plurality of support items, which are identification classifications about diagnosis support, and the diagnosis support apparatus is provided with a processor. The processor performs analysis processing for acquiring analysis results including an analysis result about an observation mode by analyzing at least one of an input signal specifying the observation mode and an observation image obtained by observing an inside of a subject with an endoscope; performs support item setting processing for setting a support item corresponding to the analysis results obtained by the analysis processing, among the plurality of support items, which are the identification classifications; and generates diagnosis support information, which is information used for diagnosis of a legion candidate area included in the observation image, based on an identification index corresponding to the set support item and the observation image.
Abstract:
A capsule endoscope system includes a capsule endoscope and a wireless communication device. The capsule endoscope includes a first movement sensor, a determiner, an imager, and a first wireless receiver. The wireless communication device includes a second analyzer and a first wireless transmitter. The first analyzer analyzes first data and generates a first analysis result. The second analyzer analyzes second data and generates a second analysis result. The determiner determines an imaging timing at a period that is equal to or shorter than a reception period on the basis of any one of the first analysis result and the second analysis result.
Abstract:
A capsule endoscope includes a sensor, an analyzer, a counter, a signal generator, and an imager. A count value becomes a reference value when an imaging synchronization signal is generated. When the count value changes from the reference value to a first predetermined value, the signal generator generates the imaging synchronization signal. A second time that is necessary for the count value to change from the reference value to the first predetermined value is fixed or variable. The second time is longer than a first time in a case in which the second times is fixed. A maximum value of the second time is longer than the first time in a case in which the second time is variable.