Abstract:
An image recording system includes a processor. The processor acquires a time series RAW image group including a plurality of time series RAW images in a first time section. The processor extracts, from the time series RAW image group, a recording candidate RAW image group included in a second time section as a part of the first time section. The processor records at least one RAW image included in the recording candidate RAW image group as a recording target RAW image which is a RAW image to be recorded. The processor selects the recording target RAW image from the recording candidate RAW image group. The processor converts the RAW image which is not selected as the recording target RAW image from the recording candidate RAW image group or the time series RAW image group to compressed data, and records the compressed data.
Abstract:
Example embodiments of the present invention relate to an image processing apparatus. The apparatus may include a processor and memory storing instructions that when executed on the processor cause the processor to perform the operations of detecting a deep region of a duct in an image and extracting a plurality of contour edges of an inner wall of the duct in the image. The apparatus then may identify a plurality of convex regions among the plurality of contour edges, analyze a respective curvature of each of the plurality of convex regions to identify a convex direction for each of the plurality of convex regions, and detect, as an abnormal region, a convex region having a convex direction directed toward the deep region.
Abstract:
An image processing apparatus for performing an image processing on a body cavity image captured in a living body includes: a storage unit which stores information including image information of the body cavity image; a change amount calculator which reads out the image information of the body cavity image from the storage unit and calculates, in the read body cavity image, a pixel value change amount of a pixel of interest with a plurality of surrounding pixels located around the pixel of interest; and a candidate lesion region detector which detects a candidate lesion region in the body cavity image based on a calculation result of the change amount calculator.
Abstract:
An image processing apparatus includes a processor. The processor is configured to output second and third images corresponding to a continuous first image respectively to first and second routes, analyze the second image and output an analysis result, and generate a fourth image based on the third image and the analysis result and continuously output the fourth image. When acquiring the third image, the processor completes the generation of the fourth image before acquiring an analysis result by the second image generated based on a same first image as the first image, which is a generation source of the third image.
Abstract:
An endoscopic image processing apparatus includes a processor having a lesion recognizing function capable of recognizing a lesioned part included in an image generated by applying predetermined processing. The processor has the lesion recognizing function implemented by performing machine learning using, as a plurality of learning images, a plurality of past observation images generated through the predetermined processing, and the processor performs conversion processing for converting, based on a setting value for learning image equivalent to a past setting value for observation image used in the predetermined processing performed at generation of each of the plurality of learning images, the image into an image for lesion recognition used for processing corresponding to the lesion recognizing function.
Abstract:
A diagnosis support apparatus performs identification for a plurality of support items, which are identification classifications about diagnosis support, and the diagnosis support apparatus is provided with a processor. The processor performs analysis processing for acquiring analysis results including an analysis result about an observation mode by analyzing at least one of an input signal specifying the observation mode and an observation image obtained by observing an inside of a subject with an endoscope; performs support item setting processing for setting a support item corresponding to the analysis results obtained by the analysis processing, among the plurality of support items, which are the identification classifications; and generates diagnosis support information, which is information used for diagnosis of a legion candidate area included in the observation image, based on an identification index corresponding to the set support item and the observation image.
Abstract:
An endoscope system includes an endoscope and an image processing device attached to one another. The image processing device includes at least one processor configured to perform operations of determining an operator's action based on an action signal from an endoscope inserted into a subject body, deciding whether an image is set as a detection target image based on the operator's action and detecting a specific region from the detection target image. The processor performs an operation of determining whether the operator's action at a time of capturing the image is a treatment action to give the subject body a treatment. Furthermore, the processor detects, from the image, a region, which exhibits a specular reflection and whose time change in area and position is large, as a washed region and then determine the operator's action at the time of capturing the image is the treatment action when the washed region is detected.
Abstract:
An image processing device includes a processor comprising hardware, wherein the processor is configured to execute: acquiring intraluminal images; generating, for each of the intraluminal images, lesion information by estimating a visual point with respect to a lesion region extracted from each of the intraluminal images and analyzing a three-dimensional structure of the lesion, the lesion information indicating any of a top portion, a rising portion, and a marginal protruding portion in the lesion region; and extracting, based on the lesion information, a target image satisfying a prescribed condition from the intraluminal images.
Abstract:
An image processing apparatus includes: a luminal shooting situation analysis unit configured to analyze a luminal shooting situation determined based on a relationship between a subject and an imaging unit that shoots the subject in a luminal image obtained by shooting an inside of a lumen; and a specific region detection unit configured to detect a specific region in accordance with the luminal shooting situation.
Abstract:
An image processing apparatus includes: an abnormality candidate region detection unit that detects an abnormality candidate region based on a contour edge of a mucosal wall or a surface shape of the mucosal wall in an intraluminal image of a body; and an abnormal region specifying unit that specifies an abnormal region based on texture information of the abnormality candidate region.