Abstract:
An endoscope apparatus has an illuminating unit that performs illumination with a first light once and performs illumination with a second light a plurality of times within a predetermined time period, an image pickup unit that outputs a first image pickup signal based on the illumination with the first light and a second image pickup signal based on the illumination with the second light, a clipping processing unit that clips the first and the second image pickup signals, a brightness calculating unit that calculates a first brightness, a composite ratio calculating unit that calculates a composite ratio according to a brightness target value and the first brightness, a composite processing unit that combines the first and the second image pickup signals according to the composite ratio, and a setting unit that sets a clip level according to the composite ratio.
Abstract:
An endoscope system includes: an endoscope having an image sensor configured to image an inside of a subject; a processor configured to perform predetermined image processing on a video signal that is imaged by the image sensor; a storage that is provided in the endoscope, the storage being configured to store compressed data obtained by compressing data volume of first non-compressed data that is used for correction of an image imaged by the image sensor; a restoring circuit configured to read the compressed data from the storage to restore the compressed data to the first non-compressed data when data is transferred from the endoscope to the processor; and an image correcting circuit that is provided in the endoscope, the image correcting circuit being configured to correct the image imaged by the image sensor by using the first non-compressed data restored by the restoring circuit.
Abstract:
An endoscope apparatus includes: a detector configured to detect a movement of an organ that moves a subject and output a detection signal; an image pickup portion configured to pick up an image of the subject and output a plurality of picked-up images; and a freeze processing portion configured to calculate a movement evaluation value evaluated according to the detection signal of the detector for at least some of the plurality of picked-up images, and determine a still image from the plurality of picked-up images based on the evaluated movement evaluation value.
Abstract:
A video processor for an endoscope includes an image memory, an image processing unit, a display control unit and a recording unit. The image memory stores, as a sample image, an endoscope image which a user previously acquired. The image processing unit performs the image processing for changing an image quality of the sample image in accordance with a selection value selected by a user and produces a processed image. The display control unit causes a display unit to display the processed image. The recording unit records, as a setting value, a value relating to the selection value determined by the user. The image processing unit performs the image processing, based on the setting value, for the endoscope image.
Abstract:
An image processing apparatus processes a first image signal including pixel signals, the first image signal having a picture portion in which a subject is shown and having a blank portion surrounding the picture portion. The apparatus includes: a blank detection unit configured to set similar frames different in size from one another within a display area of a screen representing the first image signal, in a stepwise manner from an outer periphery, and to detect the blank portion based on whether or not a part of the pixel signals belonging to a region outside each of the similar frames has the uniform color or brightness; a region-of-interest setting unit configured to set an initial region-of-interest corresponding to the picture portion in the first image signal, based on the blank portion; and a region-of-interest image generation unit configured to generate a region-of-interest image signal representing the initial region-of-interest.
Abstract:
An image pickup apparatus includes an endoscope configured to have an image pickup section in which a plurality of pixels are provided, and a storage section configured to store scope individual information, a binning processing section configured to split an image into a plurality of regions so that one region includes a plurality of pixel signals, and add up the pixel signals for each region to obtain a binning pixel signal, a binning brightness detection section configured to detect brightness of the region, a blend processing section configured to set a weight in the region on the basis of the brightness, and weight and composite the pixel signals and the binning pixel signal to generate a composite image, and a control section configured to control the binning processing section in accordance with the scope individual information.
Abstract:
An image pickup apparatus includes a light source apparatus emitting a first or a second illumination light to an object, an image pickup device acquiring an image of the object, and a CPU switching between a first mode where the image is picked up with the first illumination light and a second mode where the image is picked up with the second illumination light, being able to set at least one of a processing parameter for processing an image and a brightness control parameter before switching the illumination light to the illumination light corresponding to the mode or after switching to the corresponding illumination light is completed, and controlling whether the processing parameter is set before switching of the illumination light is started or after switching is completed according to the mode switching from the first to the second mode or from the second to the first mode.
Abstract:
A first signal processing apparatus, to which a first endoscope apparatus including a first image sensor is detachably attached and communicably connected with a second signal processing apparatus to which a second endoscope apparatus including a second image sensor is attached, the first signal processing apparatus being configured to process a first imaging signal generated by the first image sensor or a second image signal generated by the second image sensor, includes a control unit configured to control a process inside the first signal processing apparatus in accordance with communication with the second signal processing apparatus. The control unit processes the first imaging signal when a first command is received, and when a second command is received, the control unit controls the process inside the first signal processing apparatus to make the process of the second imaging signal to correspond to the second command.
Abstract:
An endoscope processor includes: a recording portion capable of recording externally inputted patient information that specifies a patient and warning information regarding a medical action to the patient; a first display control portion configured to perform setting so as to display an acquired endoscopic image and the patient information recorded in the recording portion in a predetermined section; a second display control portion configured to perform setting so as to display a warning information image based on the warning information recorded in the recording portion in an area not overlapping with the endoscopic image; and a control portion configured to perform control so as to switch display and non-display of the patient information to the first display control portion, and perform control so as to cause the warning information image to be displayed at all times according to display of the endoscopic image to the second display control portion.
Abstract:
An image pickup apparatus includes: an image pickup device configured to pick up an optical image formed by an objective optical system and generate an image; a cut-out range setting portion configured to set a cut-out area so that a center comes close to a field-of-view center as a zoom magnification set by an electronic zoom setting portion increases; and a zoom processing portion configured to cut out the set cut-out area from the image, perform enlargement or reduction corresponding to the zoom magnification and generate a zoomed image.